262 lines
8.6 KiB
Python
Raw Normal View History

2023-10-10 12:23:43 +00:00
import os
import json
import logging
import datasets
import random
from typing import List
from accelerate import Accelerator
from torch.utils.data import DataLoader
from transformers import HfArgumentParser
from dataclasses import dataclass, field, asdict
from src.lm import (
LM,
LMArgs,
GenerationArgs
)
from src.retrieval import (
RetrievalArgs,
RetrievalMetric,
)
from src.utils.util import makedirs, remove_eos, normalize_text, DefaultDataCollator, DatasetProcessFn, FileLogger
from .eval_retrieval import main as retrieval_main
logger = logging.getLogger(__name__)
@dataclass
class QAArgs(LMArgs, RetrievalArgs):
output_dir: str = field(
default="data/results/qa/",
)
eval_data: str = field(
default="llm-embedder:qa/nq/test.json",
metadata={'help': 'Path to the test file.'}
)
lm_batch_size: int = field(
default=4,
metadata={'help': 'Evaluation batch size.'},
)
few_shot: int = field(
default=10,
metadata={'help': 'How many few shot train samples?'},
)
train_data: str = field(
default="llm-embedder:qa/nq/dev.json",
metadata={'help': 'Path to the file containing training examples.'}
)
hits: int = field(
default=10,
metadata={'help': 'How many hits per query?'},
)
key_num: int = field(
default=3,
metadata={'help': 'How many docs to provide in prompt?'},
)
corpus: str = field(
default="llm-embedder:qa/nq/corpus.json",
metadata={'help': 'Corpus path for retrieval.'}
)
key_template: str = field(
default="{title} {text}",
metadata={'help': 'How to concatenate columns in the corpus to form one key?'}
)
query_max_length: int = field(
default=32,
metadata={'help': 'How many tokens at maximum in a query.'}
)
key_max_length: int = field(
default=128,
metadata={'help': 'How many tokens at maximum in a key.'}
)
metrics: List[str] = field(
default_factory=lambda: ["collate_key"],
)
2023-12-13 06:35:51 +00:00
save_to_output: bool = field(
default=True,
metadata={'help': 'Save the result/key/negative to output_dir? If not true, they will be saved next to the eval_data.'}
)
2023-10-10 12:23:43 +00:00
log_path: str = field(
default="data/results/qa/qa.log",
metadata={'help': 'Path to the file for logging.'}
)
@dataclass
class GenerationArgs(GenerationArgs):
max_new_tokens: int = field(
default=32,
metadata={'help': 'Maximum new tokens to generate.'}
)
eos_token_id: int = 13
def process_qa(tokenizer, context_max_length=2048, key_num=3, few_shot=0, train_data=None, cache_dir=None, is_encoder_decoder=False):
test = tokenizer("test", return_special_tokens_mask=True)["special_tokens_mask"]
has_bos = has_eos = False
if test[0] == 1:
has_bos = True
if test[-1] == 1:
has_eos = True
if few_shot > 0:
assert train_data is not None
train_dataset = datasets.load_dataset("json", data_files=train_data, cache_dir=cache_dir, split="train")
sample_indices = random.sample(range(len(train_dataset)), few_shot)
train_dataset = train_dataset.select(sample_indices)
def _prepare_sample(query, answers=None, **kwds):
sample = f"Question: {query}\nAnswer:"
if answers is not None:
sample = sample + " " + random.choice(answers)
return sample
def _prepare_retrieval(keys):
if keys is not None:
keys = keys[:key_num]
keys = "\n".join(keys)
keys = f"Knowledge: {keys}"
else:
keys = ""
return keys
@DatasetProcessFn()
def _process(query, query_id, key=None, **kwds):
"""Yield keys and query with a prompt template"""
output = {}
query = query.strip()
knowledge = _prepare_retrieval(key)
train_samples_max_length = context_max_length - len(tokenizer.encode("\n\n" if len(knowledge) else "" + _prepare_sample(query), add_special_tokens=False)) - int(has_bos)
if few_shot > 0:
train_samples = ""
train_samples_length = 0
for i in range(few_shot):
train_sample = train_dataset[i]
train_sample = _prepare_sample(**train_sample) + "\n\n"
if train_samples_length + len(tokenizer.encode(train_sample)) > train_samples_max_length:
break
else:
train_samples += train_sample
train_samples_length += len(tokenizer.encode(train_sample))
else:
train_samples = ""
left = knowledge
# \n\n to split retrieved knowledge
right = "\n\n" + train_samples + _prepare_sample(query)
pair = tokenizer.encode(left, right, add_special_tokens=False, truncation="only_first", max_length=context_max_length - int(has_bos) - int(has_eos))
# strip spaces and \n in the head (when there is no retrieved passage)
seq = tokenizer.decode(pair).strip()
inputs = tokenizer(seq, return_token_type_ids=False)
if has_eos and not is_encoder_decoder:
inputs = remove_eos(inputs, tokenizer.eos_token_id)
inputs["query_id"] = query_id
for k, v in inputs.items():
output[k] = v
return output
return _process
def evaluate_qa(eval_data, save_path, **kwds):
def compute_metric(eval_preds):
makedirs(save_path)
samples = {}
with open(eval_data) as f:
for line in f:
sample = json.loads(line.strip())
samples[sample["query_id"]] = sample
exact_match = 0
2023-12-13 06:35:51 +00:00
with open(save_path, "w") as f:
2023-10-10 12:23:43 +00:00
for query_id, generation in zip(*eval_preds):
sample = samples[query_id]
em = max(normalize_text(generation) == normalize_text(answer) for answer in sample["answers"])
exact_match += int(em)
sample["output"] = generation
f.write(json.dumps(sample, ensure_ascii=False) + "\n")
exact_match /= len(eval_preds[0])
return {"exact_match": exact_match}
return compute_metric
def main():
parser = HfArgumentParser([QAArgs, GenerationArgs])
args, generation_args = parser.parse_args_into_dataclasses()
accelerator = Accelerator(cpu=args.cpu)
# modify the output_dir for retrieval
if args.retrieval_method == "dense":
output_dir = os.path.join(args.output_dir, args.query_encoder.strip(os.sep).replace(os.sep, "--"))
else:
output_dir = os.path.join(args.output_dir, args.retrieval_method)
args.output_dir = output_dir
if args.retrieval_method != "no":
retrieval_main(args=args, accelerator=accelerator, log=False)
2023-12-13 06:35:51 +00:00
eval_data = RetrievalMetric._get_save_path(args.eval_data, args.output_dir, field="key", save_name=args.save_name)
2023-10-10 12:23:43 +00:00
else:
eval_data = args.eval_data
llm = LM(
model_name_or_path=args.model_name_or_path,
dtype=args.lm_dtype,
device_map=args.lm_device_map,
padding_side=args.padding_side,
cache_dir=args.model_cache_dir,
accelerator=accelerator,
generation_args=asdict(generation_args)
)
tokenizer = llm.tokenizer
logging.info(f"Loading data from {eval_data}...")
with accelerator.main_process_first():
dataset = datasets.load_dataset("json", data_files=eval_data, split="train", cache_dir=args.dataset_cache_dir)
dataset = dataset.map(process_qa(
tokenizer,
context_max_length=args.context_max_length,
key_num=args.key_num,
few_shot=args.few_shot,
train_data=args.train_data,
cache_dir=args.dataset_cache_dir,
is_encoder_decoder=llm.model.config.is_encoder_decoder
), remove_columns=dataset.column_names, batched=True, num_proc=32)
data_collator = DefaultDataCollator(tokenizer=tokenizer, add_position_ids=args.add_position_ids)
dataloader = DataLoader(
dataset,
batch_size=args.lm_batch_size,
collate_fn=data_collator,
pin_memory=True,
)
dataloader = accelerator.prepare(dataloader)
results = llm.generate(dataloader)
if accelerator.process_index == 0:
file_logger = FileLogger(makedirs(args.log_path))
result_path = os.path.join(args.output_dir, args.model_name_or_path.strip(os.sep).replace(os.sep, "--") + ".json")
metrics = evaluate_qa(eval_data, result_path)(results)
file_logger.log(metrics, Args=asdict(args))
if __name__ == "__main__":
main()