59 lines
2.1 KiB
Python
Raw Normal View History

2025-05-28 14:12:16 +08:00
import os
import argparse
import datasets
from tqdm import tqdm
from create.utils import save_tsv_dict, save_file_jsonl
def document2code(data, split="test"):
data = data[split]
queries, docs, qrels = [], [], []
for item in tqdm(data):
doc = item["prompt"]
code = item["prompt"] + '\n' + item["canonical_solution"]
doc_id = "{task_id}_doc".format_map(item)
code_id = "{task_id}_code".format_map(item)
queries.append({"_id": doc_id, "text": doc, "metadata": {}})
docs.append({"_id": code_id, "title": item["entry_point"], "text": code, "metadata": {}})
qrels.append({"query-id": doc_id, "corpus-id": code_id, "score": 1})
return queries, docs, qrels
def main():
dataset = datasets.load_dataset(args.dataset_name)
path = os.path.join(args.output_dir, args.output_name)
os.makedirs(path, exist_ok=True)
os.makedirs(os.path.join(path, "qrels"), exist_ok=True)
queries, docs, qrels = document2code(dataset, split="test")
save_file_jsonl(queries, os.path.join(path, "queries.jsonl"))
save_file_jsonl(docs, os.path.join(path, "corpus.jsonl"))
qrels_path = os.path.join(path, "qrels", "test.tsv")
save_tsv_dict(qrels, qrels_path, ["query-id", "corpus-id", "score"])
# create canonical file if not existent yet
if not os.path.exists(args.canonical_file):
canonical_solutions = []
for doc in docs:
canonical_solutions.append([{
"text": doc["text"], "title": doc["title"]
}])
canonical_dataset = dataset["test"].add_column("docs", canonical_solutions)
canonical_dataset.to_json(args.canonical_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", type=str, default="openai_humaneval")
parser.add_argument("--output_name", type=str, default="humaneval")
parser.add_argument("--canonical_file", type=str,
default="datasets/canonical/humaneval_solutions.json")
parser.add_argument("--output_dir", type=str, default="datasets")
args = parser.parse_args()
main()