mirror of
https://github.com/FlagOpen/FlagEmbedding.git
synced 2026-01-05 11:41:28 +00:00
update docs
This commit is contained in:
parent
6d9fa4ecf6
commit
1374b98da4
2
.github/workflows/documentation.yml
vendored
2
.github/workflows/documentation.yml
vendored
@ -13,7 +13,7 @@ jobs:
|
||||
- uses: actions/setup-python@v5
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install . sphinx sphinx_rtd_theme myst_parser myst-nb furo
|
||||
pip install . sphinx myst_parser myst-nb sphinx-design pydata-sphinx-theme
|
||||
- name: Sphinx build
|
||||
run: |
|
||||
sphinx-build docs/source docs/build
|
||||
|
||||
@ -159,7 +159,7 @@ Currently we are updating the [tutorials](./Tutorials/), we aim to create a comp
|
||||
The following contents are releasing in the upcoming weeks:
|
||||
|
||||
- Evaluation
|
||||
- RAG
|
||||
- BGE-EN-ICL
|
||||
|
||||
<details>
|
||||
<summary>The whole tutorial roadmap</summary>
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
sphinx
|
||||
myst-nb
|
||||
furo
|
||||
sphinx-design
|
||||
pydata-sphinx-theme
|
||||
# furo
|
||||
@ -3,4 +3,5 @@ Abstract Class
|
||||
|
||||
.. toctree::
|
||||
abc/inference
|
||||
abc/evaluation
|
||||
abc/finetune
|
||||
11
docs/source/API/index.rst
Normal file
11
docs/source/API/index.rst
Normal file
@ -0,0 +1,11 @@
|
||||
API
|
||||
===
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
|
||||
abc
|
||||
inference
|
||||
evaluation
|
||||
finetune
|
||||
2
docs/source/FAQ/index.rst
Normal file
2
docs/source/FAQ/index.rst
Normal file
@ -0,0 +1,2 @@
|
||||
FAQ
|
||||
===
|
||||
37
docs/source/Introduction/concept.rst
Normal file
37
docs/source/Introduction/concept.rst
Normal file
@ -0,0 +1,37 @@
|
||||
Concept
|
||||
=======
|
||||
|
||||
Embedder
|
||||
--------
|
||||
|
||||
Embedder, or embedding model, is a model designed to convert data, usually text, codes, or images, into sparse or dense numerical vectors (embeddings) in a high dimensional vector space.
|
||||
These embeddings capture the semantic meaning or key features of the input, which enable efficient comparison and analysis.
|
||||
|
||||
A very famous demonstration is the example from `word2vec <https://arxiv.org/abs/1301.3781>`_. It shows how word embeddings capture semantic relationships through vector arithmetic:
|
||||
|
||||
.. image:: ../_static/img/word2vec.png
|
||||
:width: 500
|
||||
:align: center
|
||||
|
||||
Nowadays, embedders are capable of mapping sentences and even passages into vector space.
|
||||
They are widely used in real world tasks such as retrieval, clustering, etc.
|
||||
In the era of LLMs, embedding models play a pivot role in RAG, enables LLMs to access and integrate relevant context from vast external datasets.
|
||||
|
||||
Reranker
|
||||
--------
|
||||
|
||||
Reranker, or Cross-Encoder, is a model that refines the ranking of candidate pairs (e.g., query-document pairs) by jointly encoding and scoring them.
|
||||
|
||||
Typically, we use embedder as a Bi-Encoder. It first computes the embeddings of two input sentences, then compute their similarity using metrics such as cosine similarity or Euclidean distance.
|
||||
Whereas a reranker takes two sentences at the same time and directly computer a score representing their similarity.
|
||||
|
||||
The following figure shows their difference:
|
||||
|
||||
.. figure:: https://raw.githubusercontent.com/UKPLab/sentence-transformers/master/docs/img/Bi_vs_Cross-Encoder.png
|
||||
:width: 500
|
||||
:align: center
|
||||
|
||||
Bi-Encoder & Cross-Encoder (from Sentence Transformers)
|
||||
|
||||
Although Cross-Encoder usually has better performances than Bi-Encoder, it is extremly time consuming to use Cross-Encoder if we have a great amount of data.
|
||||
Thus a widely accepted approach is to use a Bi-Encoder for initial retrieval (e.g., selecting the top 100 candidates from 100,000 sentences) and then refine the ranking of the selected candidates using a Cross-Encoder for more accurate results.
|
||||
19
docs/source/Introduction/index.rst
Normal file
19
docs/source/Introduction/index.rst
Normal file
@ -0,0 +1,19 @@
|
||||
Introduction
|
||||
============
|
||||
|
||||
BGE builds one-stop retrieval toolkit for search and RAG. We provide inference, evaluation, and fine-tuning for embedding models and reranker.
|
||||
|
||||
.. figure:: ../_static/img/RAG_pipeline.png
|
||||
:width: 700
|
||||
:align: center
|
||||
|
||||
BGE embedder and reranker in an RAG pipeline.
|
||||
|
||||
Quickly get started with:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
installation
|
||||
concept
|
||||
quick_start
|
||||
@ -40,4 +40,9 @@ For development in editable mode:
|
||||
# If you do not want to finetune the models, you can install the package without the finetune dependency:
|
||||
pip install -e .
|
||||
# If you want to finetune the models, you can install the package with the finetune dependency:
|
||||
pip install -e .[finetune]
|
||||
pip install -e .[finetune]
|
||||
|
||||
PyTorch-CUDA
|
||||
------------
|
||||
|
||||
If you want to use CUDA GPUs during inference and finetuning, please install appropriate version of `PyTorch <https://pytorch.org/get-started/locally/>`_ with CUDA support.
|
||||
9
docs/source/_static/css/custom.css
Normal file
9
docs/source/_static/css/custom.css
Normal file
@ -0,0 +1,9 @@
|
||||
.bd-sidebar-primary {
|
||||
width: 22%;
|
||||
line-height: 1.4;
|
||||
}
|
||||
|
||||
.col-lg-3 {
|
||||
flex: 0 0 auto;
|
||||
width: 22%;
|
||||
}
|
||||
BIN
docs/source/_static/img/RAG_pipeline.png
Normal file
BIN
docs/source/_static/img/RAG_pipeline.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 297 KiB |
BIN
docs/source/_static/img/word2vec.png
Normal file
BIN
docs/source/_static/img/word2vec.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 68 KiB |
@ -1,2 +1,117 @@
|
||||
======
|
||||
BGE-M3
|
||||
======
|
||||
======
|
||||
|
||||
BGE-M3 is a compound and powerful embedding model distinguished for its versatility in:
|
||||
- **Multi-Functionality**: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
||||
- **Multi-Linguality**: It can support more than 100 working languages.
|
||||
- **Multi-Granularity**: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
|
||||
|
||||
+-------------------------------------------------------------------+-----------------+------------+--------------+-----------------------------------------------------------------------+
|
||||
| Model | Language | Parameters | Model Size | Description |
|
||||
+===================================================================+=================+============+==============+=======================================================================+
|
||||
| `BAAI/bge-m3 <https://huggingface.co/BAAI/bge-m3>`_ | Multi-Lingual | 569M | 2.27 GB | Multi-Functionality, Multi-Linguality, and Multi-Granularity |
|
||||
+-------------------------------------------------------------------+-----------------+------------+--------------+-----------------------------------------------------------------------+
|
||||
|
||||
Multi-Linguality
|
||||
================
|
||||
|
||||
BGE-M3 was trained on multiple datasets covering up to 170+ different languages.
|
||||
While the amount of training data on languages are highly unbalanced, the actual model performance on different languages will have difference.
|
||||
|
||||
For more information of datasets and evaluation results, please check out our `paper <https://arxiv.org/pdf/2402.03216s>`_ for details.
|
||||
|
||||
Multi-Granularity
|
||||
=================
|
||||
|
||||
We extend the max position to 8192, enabling the embedding of larger corpus.
|
||||
Proposing a simple but effective method: MCLS (Multiple CLS) to enhance the model's ability on long text without additional fine-tuning.
|
||||
|
||||
Multi-Functionality
|
||||
===================
|
||||
|
||||
.. code:: python
|
||||
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3')
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
||||
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
||||
|
||||
Dense Retrieval
|
||||
---------------
|
||||
|
||||
Similar to BGE v1 or v1.5 models, BGE-M3 use the normalized hidden state of the special token [CLS] as the dense embedding:
|
||||
|
||||
.. math:: e_q = norm(H_q[0])
|
||||
|
||||
Next, to compute the relevance score between the query and passage:
|
||||
|
||||
.. math:: s_{dense}=f_{sim}(e_p, e_q)
|
||||
|
||||
where :math:`e_p, e_q` are the embedding vectors of passage and query, respectively.
|
||||
|
||||
:math:`f_{sim}` is the score function (such as inner product and L2 distance) for comupting two embeddings' similarity.
|
||||
|
||||
Sparse Retrieval
|
||||
----------------
|
||||
|
||||
BGE-M3 generates sparce embeddings by adding a linear layer and a ReLU activation function following the hidden states:
|
||||
|
||||
.. math:: w_{qt} = \text{Relu}(W_{lex}^T H_q [i])
|
||||
|
||||
where :math:`W_{lex}` representes the weights of linear layer and :math:`H_q[i]` is the encoder's output of the :math:`i^{th}` token.
|
||||
|
||||
Based on the tokens' weights of query and passage, the relevance score between them is computed by the joint importance of the co-existed terms within the query and passage:
|
||||
|
||||
.. math:: s_{lex} = \sum_{t\in q\cap p}(w_{qt} * w_{pt})
|
||||
|
||||
where :math:`w_{qt}, w_{pt}` are the importance weights of each co-existed term :math:`t` in query and passage, respectively.
|
||||
|
||||
Multi-Vector
|
||||
------------
|
||||
|
||||
The multi-vector method utilizes the entire output embeddings for the representation of query :math:`E_q` and passage :math:`E_p`.
|
||||
|
||||
.. math::
|
||||
|
||||
E_q = norm(W_{mul}^T H_q)
|
||||
|
||||
E_p = norm(W_{mul}^T H_p)
|
||||
|
||||
where :math:`W_{mul}` is the learnable projection matrix.
|
||||
|
||||
Following ColBert, BGE-M3 use late-interaction to compute the fine-grained relevance score:
|
||||
|
||||
.. math:: s_{mul}=\frac{1}{N}\sum_{i=1}^N\max_{j=1}^M E_q[i]\cdot E_p^T[j]
|
||||
|
||||
where :math:`E_q, E_p` are the entire output embeddings of query and passage, respectively.
|
||||
|
||||
This is a summation of average of maximum similarity of each :math:`v\in E_q` with vectors in :math:`E_p`.
|
||||
|
||||
Hybrid Ranking
|
||||
--------------
|
||||
|
||||
BGE-M3's multi-functionality gives the possibility of hybrid ranking to improve retrieval.
|
||||
Firstly, due to the heavy cost of multi-vector method, we can retrieve the candidate results by either of the dense or sparse method.
|
||||
Then, to get the final result, we can rerank the candidates based on the integrated relevance score:
|
||||
|
||||
.. math:: s_{rank} = w_1\cdot s_{dense}+w_2\cdot s_{lex} + w_3\cdot s_{mul}
|
||||
|
||||
where the values chosen for :math:`w_1`, :math:`w_2` and :math:`w_3` varies depending on the downstream scenario.
|
||||
|
||||
|
||||
Usage
|
||||
=====
|
||||
|
||||
.. code:: python
|
||||
|
||||
from FlagEmbedding import BGEM3FlagModel
|
||||
|
||||
model = BGEM3FlagModel('BAAI/bge-m3')
|
||||
|
||||
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
||||
|
||||
output = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
||||
dense, sparse, multiv = output['dense_vecs'], output['lexical_weights'], output['colbert_vecs']
|
||||
@ -1,5 +1,7 @@
|
||||
BGE-v1
|
||||
======
|
||||
BGE v1 & v1.5
|
||||
=============
|
||||
|
||||
BGE v1 and v1.5 are series of encoder only models base on BERT. They achieved best performance among the models of the same size at the time of release.
|
||||
|
||||
BGE
|
||||
---
|
||||
@ -26,7 +28,7 @@ C-MTEB benchmarks at the time released.
|
||||
BGE-v1.5
|
||||
--------
|
||||
|
||||
Then to enhance its retrieval ability without instruction and alleviate the issue of the similarity distribution, :code:`bge-*-1.5` models
|
||||
Then to enhance its retrieval ability without instruction and alleviate the issue of the similarity distribution, :code:`bge-*-v1.5` models
|
||||
were released in Sep 2023. They are still the most popular embedding models that balanced well between embedding quality and model sizes.
|
||||
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+--------------+
|
||||
@ -37,8 +39,8 @@ were released in Sep 2023. They are still the most popular embedding models that
|
||||
| `BAAI/bge-base-en-v1.5 <https://huggingface.co/BAAI/bge-base-en-v1.5>`_ | English | 109M | 438 MB | reasonable |
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+ similarity +
|
||||
| `BAAI/bge-small-en-v1.5 <https://huggingface.co/BAAI/bge-small-en-v1.5>`_ | English | 33.4M | 133 MB | distribution |
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+ +
|
||||
| `BAAI/bge-large-zh-v1.5 <https://huggingface.co/BAAI/bge-large-zh-v1.5>`_ | Chinese | 326M | 1.3 GB | |
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+ and better +
|
||||
| `BAAI/bge-large-zh-v1.5 <https://huggingface.co/BAAI/bge-large-zh-v1.5>`_ | Chinese | 326M | 1.3 GB | performance |
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+ +
|
||||
| `BAAI/bge-base-zh-v1.5 <https://huggingface.co/BAAI/bge-base-zh-v1.5>`_ | Chinese | 102M | 409 MB | |
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+ +
|
||||
@ -46,4 +48,30 @@ were released in Sep 2023. They are still the most popular embedding models that
|
||||
+-----------------------------------------------------------------------------+-----------+------------+--------------+--------------+
|
||||
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
To use BGE v1 or v1.5 model for inference, load model through ``
|
||||
|
||||
.. code:: python
|
||||
|
||||
from FlagEmbedding import FlagModel
|
||||
|
||||
model = FlagModel('BAAI/bge-base-en-v1.5')
|
||||
|
||||
sentences = ["Hello world", "I am inevitable"]
|
||||
embeddings = model.encode(sentences)
|
||||
|
||||
.. tip::
|
||||
|
||||
For simple tasks that only encode a few sentences like above, it's faster to use single GPU comparing to multi-GPUs:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
or
|
||||
|
||||
.. code:: python
|
||||
|
||||
model = FlagModel('BAAI/bge-base-en-v1.5', devices=0)
|
||||
19
docs/source/bge/index.rst
Normal file
19
docs/source/bge/index.rst
Normal file
@ -0,0 +1,19 @@
|
||||
BGE
|
||||
===
|
||||
|
||||
**BGE** stands for **BAAI General Embeddings**, which is a series of embedding models released by BAAI.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Embedder
|
||||
|
||||
bge_v1_v1.5
|
||||
bge_m3
|
||||
bge_icl
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Embedder
|
||||
|
||||
bge_reranker
|
||||
|
||||
@ -1,5 +0,0 @@
|
||||
Introduction
|
||||
============
|
||||
|
||||
**BGE** stands for **BAAI General Embeddings**, which is a series of embedding models released by BAAI.
|
||||
|
||||
2
docs/source/community/index.rst
Normal file
2
docs/source/community/index.rst
Normal file
@ -0,0 +1,2 @@
|
||||
Community
|
||||
=========
|
||||
@ -24,6 +24,7 @@ extensions = [
|
||||
"sphinx.ext.githubpages",
|
||||
"sphinx.ext.viewcode",
|
||||
"sphinx.ext.coverage",
|
||||
"sphinx_design",
|
||||
"myst_nb",
|
||||
]
|
||||
|
||||
@ -33,21 +34,55 @@ exclude_patterns = []
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
|
||||
|
||||
html_theme = 'furo'
|
||||
# html_logo = "_static/img/BAAI_logo.png"
|
||||
# html_theme = 'furo'
|
||||
html_theme = "pydata_sphinx_theme"
|
||||
html_logo = "_static/img/BAAI_logo.png"
|
||||
html_title = "FlagEmbedding"
|
||||
html_static_path = ['_static']
|
||||
html_css_files = ["css/custom.css"]
|
||||
html_theme_options = {
|
||||
# "light_logo": "/_static/img/BAAI_logo.png",
|
||||
"light_css_variables": {
|
||||
"color-brand-primary": "#238be8",
|
||||
"color-brand-content": "#238be8",
|
||||
},
|
||||
"dark_css_variables": {
|
||||
"color-brand-primary": "#FBCB67",
|
||||
"color-brand-content": "#FBCB67",
|
||||
},
|
||||
# # "light_logo": "/_static/img/BAAI_logo.png",
|
||||
# "light_css_variables": {
|
||||
# "color-brand-primary": "#238be8",
|
||||
# "color-brand-content": "#238be8",
|
||||
# },
|
||||
# "dark_css_variables": {
|
||||
# "color-brand-primary": "#FBCB67",
|
||||
# "color-brand-content": "#FBCB67",
|
||||
# },
|
||||
"navigation_depth": 5,
|
||||
}
|
||||
|
||||
# MyST-NB conf
|
||||
nb_execution_mode = "off"
|
||||
nb_execution_mode = "off"
|
||||
|
||||
html_theme_options = {
|
||||
"external_links": [
|
||||
{
|
||||
"url": "https://huggingface.co/collections/BAAI/bge-66797a74476eb1f085c7446d",
|
||||
"name": "HF Models",
|
||||
},
|
||||
],
|
||||
"icon_links":[
|
||||
{
|
||||
"name": "GitHub",
|
||||
"url": "https://github.com/FlagOpen/FlagEmbedding",
|
||||
"icon": "fa-brands fa-github",
|
||||
},
|
||||
{
|
||||
"name": "PyPI",
|
||||
"url": "https://pypi.org/project/FlagEmbedding/",
|
||||
"icon": "fa-brands fa-python",
|
||||
},
|
||||
{
|
||||
"name": "HF Models",
|
||||
"url": "https://huggingface.co/collections/BAAI/bge-66797a74476eb1f085c7446d",
|
||||
"icon": "fa-solid fa-cube",
|
||||
}
|
||||
],
|
||||
"header_links_before_dropdown": 7,
|
||||
}
|
||||
|
||||
html_context = {
|
||||
"default_mode": "light"
|
||||
}
|
||||
@ -3,23 +3,100 @@
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
BAAI General Embedding
|
||||
======================
|
||||
:html_theme.sidebar_secondary.remove: True
|
||||
|
||||
|
|
||||
|
|
||||
|
||||
.. image:: _static/img/bge_logo.jpg
|
||||
:target: https://github.com/FlagOpen/FlagEmbedding
|
||||
:width: 500
|
||||
:align: center
|
||||
|
||||
|
|
||||
|
|
||||
BGE
|
||||
===
|
||||
|
||||
Welcome to BGE documentation!
|
||||
|
||||
We aim for building one-stop retrieval toolkit for search and RAG.
|
||||
.. figure:: _static/img/bge_logo.jpg
|
||||
:width: 400
|
||||
:align: center
|
||||
|
||||
.. grid:: 3
|
||||
:gutter: 3
|
||||
|
||||
.. grid-item-card:: :octicon:`milestone` Introduction
|
||||
|
||||
New to BGE? Quickly get hands-on information.
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: Introduction/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To Introduction
|
||||
|
||||
|
||||
.. grid-item-card:: :octicon:`package` BGE Models
|
||||
|
||||
Get to know BGE embedding models and rerankers.
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: bge/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To BGE
|
||||
|
||||
|
||||
.. grid-item-card:: :octicon:`log` Tutorials
|
||||
|
||||
Find useful tutorials to start with if you are looking for guidance
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: tutorial/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To Tutorials
|
||||
|
||||
.. grid-item-card:: :octicon:`codescan` API
|
||||
|
||||
Check the API of classes and functions in FlagEmbedding.
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: API/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To APIs
|
||||
|
||||
.. grid-item-card:: :octicon:`question` FAQ
|
||||
|
||||
Take a look of questions people frequently asked.
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: FAQ/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To FAQ
|
||||
|
||||
.. grid-item-card:: :octicon:`people` Community
|
||||
|
||||
Welcome to join BGE community!
|
||||
|
||||
+++
|
||||
|
||||
.. button-ref:: community/index
|
||||
:expand:
|
||||
:color: primary
|
||||
:click-parent:
|
||||
|
||||
To Community
|
||||
|
||||
Besides the resources we provide here in this documentation, please visit our `GitHub repo <https://github.com/FlagOpen/FlagEmbedding>`_ for more contents including:
|
||||
|
||||
@ -49,27 +126,39 @@ BGE is developed by Beijing Academy of Artificial Intelligence (BAAI).
|
||||
:maxdepth: 1
|
||||
:caption: Introduction
|
||||
|
||||
Introduction/installation
|
||||
Introduction/quick_start
|
||||
Introduction/index
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 5
|
||||
:caption: API
|
||||
:maxdepth: 1
|
||||
:caption: BGE
|
||||
|
||||
API/abc
|
||||
API/inference
|
||||
API/evaluation
|
||||
API/finetune
|
||||
bge/index
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 2
|
||||
:caption: Tutorials
|
||||
|
||||
tutorial/1_Embedding
|
||||
tutorial/2_Metrics
|
||||
tutorial/3_Indexing
|
||||
tutorial/4_Evaluation
|
||||
tutorial/5_Reranking
|
||||
tutorial/6_RAG
|
||||
tutorial/index
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 5
|
||||
:caption: API
|
||||
|
||||
API/index
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
:caption: FAQ
|
||||
|
||||
FAQ/index
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
:caption: Community
|
||||
|
||||
community/index
|
||||
14
docs/source/tutorial/index.rst
Normal file
14
docs/source/tutorial/index.rst
Normal file
@ -0,0 +1,14 @@
|
||||
Tutorials
|
||||
=========
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:maxdepth: 1
|
||||
:caption: Tutorials
|
||||
|
||||
1_Embedding
|
||||
2_Metrics
|
||||
3_Indexing
|
||||
4_Evaluation
|
||||
5_Reranking
|
||||
6_RAG
|
||||
Loading…
x
Reference in New Issue
Block a user