upload m3 embedder compute_score examples

This commit is contained in:
hanhainebula 2024-10-19 21:33:16 +08:00
parent 7fc9fca908
commit 2c4c9629f3
4 changed files with 124 additions and 3 deletions

View File

@ -344,7 +344,10 @@ class M3Embedder(AbsEmbedder):
max_passage_length: int = 512,
weights_for_different_modes: List[float] = None,
**kwargs: Any
) -> Dict[str, List[float]]:
) -> Dict[
Literal["colbert", "sparse", "dense", "sparse+dense", "colbert+sparse+dense"],
List[float]
]:
if len(self.target_devices) == 1:
return self.compute_score_single_device(
sentence_pairs,

View File

@ -0,0 +1,59 @@
import os
from FlagEmbedding import BGEM3FlagModel
def test_m3_multi_devices():
model = BGEM3FlagModel(
'BAAI/bge-m3',
normalize_embeddings=True,
use_fp16=True,
devices=["cuda:0", "cuda:1"], # if you don't have GPUs, you can use ["cpu", "cpu"]
pooling_method='cls',
cache_dir=os.getenv('HF_HUB_CACHE', None),
)
queries = [
"What is BGE M3?",
"Defination of BM25"
] * 100
passages = [
"BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"
] * 100
sentence_pairs = list(zip(queries, passages))
scores_dict = model.compute_score(
sentence_pairs,
weights_for_different_modes=[1., 0.3, 1.]
)
queries.reverse()
sentence_pairs = list(zip(queries, passages))
scores_dict_reverse = model.compute_score(
sentence_pairs,
weights_for_different_modes=[1., 0.3, 1.]
)
scores_dict = {
key: value[:2]
for key, value in scores_dict.items()
}
scores_dict_reverse = {
key: value[:2]
for key, value in scores_dict_reverse.items()
}
print(scores_dict)
print(scores_dict_reverse)
if __name__ == '__main__':
test_m3_multi_devices()
# print("--------------------------------")
# print("Expected Output:")
# print("Dense score:")
# print(" [[0.626 0.3477]\n [0.3496 0.678 ]]")
# print("Sparse score:")
# print(" [[0.19554901 0.00880432]\n [0. 0.18036556]]")

View File

@ -2,7 +2,7 @@ import os
from FlagEmbedding import BGEM3FlagModel
def test_m3_single_devices():
def test_m3_single_device():
model = BGEM3FlagModel(
'BAAI/bge-m3',
normalize_embeddings=True,
@ -45,7 +45,7 @@ def test_m3_single_devices():
if __name__ == '__main__':
test_m3_single_devices()
test_m3_single_device()
print("--------------------------------")
print("Expected Output:")

View File

@ -0,0 +1,59 @@
import os
from FlagEmbedding import BGEM3FlagModel
def test_m3_single_device():
model = BGEM3FlagModel(
'BAAI/bge-m3',
normalize_embeddings=True,
use_fp16=True,
devices="cuda:0", # if you don't have a GPU, you can use "cpu"
pooling_method='cls',
cache_dir=os.getenv('HF_HUB_CACHE', None),
)
queries = [
"What is BGE M3?",
"Defination of BM25"
] * 100
passages = [
"BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"
] * 100
sentence_pairs = list(zip(queries, passages))
scores_dict = model.compute_score(
sentence_pairs,
weights_for_different_modes=[1., 0.3, 1.]
)
queries.reverse()
sentence_pairs = list(zip(queries, passages))
scores_dict_reverse = model.compute_score(
sentence_pairs,
weights_for_different_modes=[1., 0.3, 1.]
)
scores_dict = {
key: value[:2]
for key, value in scores_dict.items()
}
scores_dict_reverse = {
key: value[:2]
for key, value in scores_dict_reverse.items()
}
print(scores_dict)
print(scores_dict_reverse)
if __name__ == '__main__':
test_m3_single_device()
# print("--------------------------------")
# print("Expected Output:")
# print("Dense score:")
# print(" [[0.626 0.3477]\n [0.3496 0.678 ]]")
# print("Sparse score:")
# print(" [[0.19554901 0.00880432]\n [0. 0.18036556]]")