update reranker FT

This commit is contained in:
cfli 2024-10-31 21:34:56 +08:00
parent 98d2621f3c
commit 456899a100
2 changed files with 16 additions and 15 deletions

View File

@ -8,6 +8,7 @@ from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from FlagEmbedding.finetune.reranker.decoder_only.layerwise.arguments import RerankerModelArguments
from .modeling_minicpm_reranker import LayerWiseMiniCPMForCausalLM, LayerWiseHead
from .configuration_minicpm_reranker import LayerWiseMiniCPMConfig
logger = logging.getLogger(__name__)
@ -41,7 +42,7 @@ def get_model(model_args: RerankerModelArguments, only_for_one_logit):
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
token=model_args,
token=model_args.token,
cache_dir=model_args.cache_dir
)
else:
@ -61,7 +62,7 @@ def get_model(model_args: RerankerModelArguments, only_for_one_logit):
trust_remote_code=model_args.trust_remote_code,
# torch_dtype=torch.float16 if training_args.fp16 else torch.bfloat16,
use_flash_attention_2=True if model_args.use_flash_attn else False,
token=model_args,
token=model_args.token,
cache_dir=model_args.cache_dir,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
@ -115,7 +116,7 @@ def get_model(model_args: RerankerModelArguments, only_for_one_logit):
model_args.model_name_or_path,
# torch_dtype=torch.float16 if training_args.fp16 else torch.bfloat16,
use_flash_attention_2=True if model_args.use_flash_attn else False,
token=model_args,
token=model_args.token,
cache_dir=model_args.cache_dir,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
@ -155,14 +156,14 @@ def save_merged_model(model_args: RerankerModelArguments, output_dir: str):
config = AutoConfig.from_pretrained(
model_args.config_name,
trust_remote_code=model_args.trust_remote_code,
token=model_args,
token=model_args.token,
cache_dir=model_args.cache_dir
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
token=model_args,
token=model_args.token,
cache_dir=model_args.cache_dir
)
else:
@ -172,19 +173,19 @@ def save_merged_model(model_args: RerankerModelArguments, output_dir: str):
config.use_cache = False
if model_args.model_type == 'from_raw_model':
config = AutoConfig.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise',
cache_dir=model_args.cache_dir,
token=model_args,
trust_remote_code=model_args.trust_remote_code)
config = LayerWiseMiniCPMConfig.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise',
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code)
config.start_layer = model_args.start_layer
config.head_multi = model_args.head_multi
config.head_type = model_args.head_type
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
token=model_args,
trust_remote_code=model_args.trust_remote_code)
model = LayerWiseMiniCPMForCausalLM.from_pretrained(model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code)
if model_args.raw_peft is not None:
for peft_path in model_args.raw_peft:

View File

@ -8,7 +8,7 @@ from FlagEmbedding.abc.inference import AbsReranker
def sigmoid(x):
return 1 / (1 + np.exp(-x))
return float(1 / (1 + np.exp(-x)))
class BaseReranker(AbsReranker):