From 7dc688608399ea81853a77d61d3226485b447d74 Mon Sep 17 00:00:00 2001
From: zhengliu <46858936+ZhengLiu101@users.noreply.github.com>
Date: Sat, 8 Mar 2025 12:31:22 +0800
Subject: [PATCH] Update README.md
---
README.md | 34 ++++++++++++++++++----------------
1 file changed, 18 insertions(+), 16 deletions(-)
diff --git a/README.md b/README.md
index 1153d16..618077a 100644
--- a/README.md
+++ b/README.md
@@ -40,29 +40,18 @@
-BGE (BAAI General Embedding) focuses on retrieval-augmented LLMs, consisting of the following projects currently:
-
-
-
-- **Inference**: [Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/embedder), [Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/reranker)
-- **Finetune**: [Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune/embedder), [Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune/reranker)
-- **[Evaluation](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/evaluation)**
-- **[Dataset](https://github.com/FlagOpen/FlagEmbedding/tree/master/dataset)**
-- **[Tutorials](https://github.com/FlagOpen/FlagEmbedding/tree/master/Tutorials)**
-- **[research](https://github.com/FlagOpen/FlagEmbedding/tree/master/research)**
-
## News
-- 3/6/2025: :fire: Release **MegaPairs** ([repo](https://github.com/VectorSpaceLab/MegaPairs), [paper](https://arxiv.org/abs/2412.14475)), massive data synthesis for universal multimodal retrieval. And corresponding [BGE-VL](https://huggingface.co/collections/BAAI/megapairs-67c6bbe49c15a9e7a7c69d92) series multimodel embedding models!
+- 3/6/2025: :fire::fire: Introduce **BGE-VL** ([HF repo](https://huggingface.co/collections/BAAI/megapairs-67c6bbe49c15a9e7a7c69d92)), State-Of-The-Art multimodal embedding models to support Any visual search applications (everything, including text-to-image, image-to-text, image&prompt-to-image, text-to-image&text, and more)! They are released under the MIT license and are completely free for both academic and commercial use. We also release **MegaPairs** ([repo](https://github.com/VectorSpaceLab/MegaPairs), [paper](https://arxiv.org/abs/2412.14475)), a massive synthetic dataset which empowers BGE-VL!
- 12/5/2024: :book: We built the [BGE documentation](https://www.bge-model.com) for centralized BGE information and materials!
- 10/29/2024: :earth_asia: We created WeChat group for BGE. Scan the [QR code](./imgs/BGE_WeChat_Group.png) to join the group chat! To get the first hand message about our updates and new release, or having any questions or ideas, join us now!
-
-- 10/22/2024: :fire: We release another interesting model: [OmniGen](https://github.com/VectorSpaceLab/OmniGen), which is a unified image generation model supporting various tasks. OmniGen can accomplish complex image generation tasks without the need for additional plugins like ControlNet, IP-Adapter, or auxiliary models such as pose detection and face detection.
-- 9/10/2024: Introducing **MemoRAG**, a step forward towards RAG 2.0 on top of memory-inspired knowledge discovery (repo: https://github.com/qhjqhj00/MemoRAG, paper: https://arxiv.org/pdf/2409.05591v1) :fire:
+- 10/22/2024: We release another interesting model: [OmniGen](https://github.com/VectorSpaceLab/OmniGen), which is a unified image generation model supporting various tasks. OmniGen can accomplish complex image generation tasks without the need for additional plugins like ControlNet, IP-Adapter, or auxiliary models such as pose detection and face detection.
+- 9/10/2024: Introducing **MemoRAG**, a step forward towards RAG 2.0 on top of memory-inspired knowledge discovery (repo: https://github.com/qhjqhj00/MemoRAG, paper: https://arxiv.org/pdf/2409.05591v1)
- 9/2/2024: Start to maintain the [tutorials](./Tutorials/). The contents within will be actively updated and eariched, stay tuned! :books:
-- 7/26/2024: Release a new embedding model [bge-en-icl](https://huggingface.co/BAAI/bge-en-icl), an embedding model that incorporates in-context learning capabilities, which, by providing task-relevant query-response examples, can encode semantically richer queries, further enhancing the semantic representation ability of the embeddings. :fire:
-- 7/26/2024: Release a new embedding model [bge-multilingual-gemma2](https://huggingface.co/BAAI/bge-multilingual-gemma2), a multilingual embedding model based on gemma-2-9b, which supports multiple languages and diverse downstream tasks, achieving new SOTA on multilingual benchmarks (MIRACL, MTEB-fr, and MTEB-pl). :fire:
+- 7/26/2024: Release a new embedding model [bge-en-icl](https://huggingface.co/BAAI/bge-en-icl), an embedding model that incorporates in-context learning capabilities, which, by providing task-relevant query-response examples, can encode semantically richer queries, further enhancing the semantic representation ability of the embeddings.
+- 7/26/2024: Release a new embedding model [bge-multilingual-gemma2](https://huggingface.co/BAAI/bge-multilingual-gemma2), a multilingual embedding model based on gemma-2-9b, which supports multiple languages and diverse downstream tasks, achieving new SOTA on multilingual benchmarks (MIRACL, MTEB-fr, and MTEB-pl).
- 7/26/2024: Release a new lightweight reranker [bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight), a lightweight reranker based on gemma-2-9b, which supports token compression and layerwise lightweight operations, can still ensure good performance while saving a significant amount of resources. :fire:
@@ -95,6 +84,19 @@ It is the first embedding model which supports all three retrieval methods, achi
+
+BGE (BAAI General Embedding) focuses on retrieval-augmented LLMs, consisting of the following projects currently:
+
+
+
+- **Inference**: [Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/embedder), [Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/reranker)
+- **Finetune**: [Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune/embedder), [Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune/reranker)
+- **[Evaluation](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/evaluation)**
+- **[Dataset](https://github.com/FlagOpen/FlagEmbedding/tree/master/dataset)**
+- **[Tutorials](https://github.com/FlagOpen/FlagEmbedding/tree/master/Tutorials)**
+- **[research](https://github.com/FlagOpen/FlagEmbedding/tree/master/research)**
+
+
## Installation
### Using pip:
If you do not want to finetune the models, you can install the package without the finetune dependency: