diff --git a/research/BGE_Coder/README.md b/research/BGE_Coder/README.md index 19f081e..11a63bc 100644 --- a/research/BGE_Coder/README.md +++ b/research/BGE_Coder/README.md @@ -11,14 +11,17 @@

+ This repo contains the data, training, and evaluation pipeline for CodeR / [BGE-Code-v1](https://huggingface.co/BAAI/bge-code-v1) **[BGE-Code-v1](https://huggingface.co/BAAI/bge-code-v1)** is an LLM-based code embedding model that supports code retrieval, text retrieval, and multilingual retrieval. It primarily demonstrates the following capabilities: + - Superior Code Retrieval Performance: The model demonstrates exceptional code retrieval capabilities, supporting natural language queries in both English and Chinese, as well as 20 programming languages. - Robust Text Retrieval Capabilities: The model maintains strong text retrieval capabilities comparable to text embedding models of similar scale. - Extensive Multilingual Support: BGE-Code-v1 offers comprehensive multilingual retrieval capabilities, excelling in languages such as English, Chinese, Japanese, French, and more. ## :bell: News: + - 🥳 5/15/2025: We have released the CodeR! :fire: ## Usage @@ -29,9 +32,6 @@ This repo contains the data, training, and evaluation pipeline for CodeR / [BGE- git clone https://github.com/FlagOpen/FlagEmbedding.git cd FlagEmbedding pip install -e . -``` - -```python from FlagEmbedding import FlagLLMModel queries = [ "Delete the record with ID 4 from the 'Staff' table.", @@ -149,29 +149,29 @@ print(scores.tolist()) - CoIR -| | CodeXEmbed-2B | CodeXEmbed-7B | Voyage-Code-002 | Voyage-Code-003 | BGE-Code-v1 | -|---------------------------------------|---------------|---------------|-----------------|-----------------|-----------| -| **Apps** | 76.86 | 85.38 | 26.52 | 93.62 | 98.08 | -| **CosQA** | 40.47 | 42.47 | 29.79 | 34.45 | 46.72 | -| **Text2SQL** | 78.42 | 78.94 | 69.26 | 62.87 | 64.35 | -| **CSN** | 87.87 | 89.67 | 81.79 | 89.35 | 89.53 | -| **CSN-CCR** | 97.66 | 97.95 | 73.45 | 90.05 | 98.30 | -| **CodeTrans-Contest** | 90.30 | 94.45 | 72.77 | 94.96 | 94.38 | -| **CodeTrans-DL** | 38.57 | 40.46 | 27.48 | 38.57 | 46.13 | -| **StackOverFlow-QA** | 94.47 | 96.33 | 67.68 | 97.17 | 95.35 | -| **CodeFeedBack-ST** | 86.36 | 87.53 | 65.35 | 90.67 | 90.56 | -| **CodeFeedBack-MT** | 65.51 | 68.83 | 28.74 | 93.58 | 94.38 | -| **AVG** | **75.65** | **78.20** | **56.26** | **78.53** | **81.77** | +| | CodeXEmbed-2B | CodeXEmbed-7B | Voyage-Code-002 | Voyage-Code-003 | BGE-Code-v1 | +| --------------------- | ------------- | ------------- | --------------- | --------------- | ----------- | +| **Apps** | 76.86 | 85.38 | 26.52 | 93.62 | 98.08 | +| **CosQA** | 40.47 | 42.47 | 29.79 | 34.45 | 46.72 | +| **Text2SQL** | 78.42 | 78.94 | 69.26 | 62.87 | 64.35 | +| **CSN** | 87.87 | 89.67 | 81.79 | 89.35 | 89.53 | +| **CSN-CCR** | 97.66 | 97.95 | 73.45 | 90.05 | 98.30 | +| **CodeTrans-Contest** | 90.30 | 94.45 | 72.77 | 94.96 | 94.38 | +| **CodeTrans-DL** | 38.57 | 40.46 | 27.48 | 38.57 | 46.13 | +| **StackOverFlow-QA** | 94.47 | 96.33 | 67.68 | 97.17 | 95.35 | +| **CodeFeedBack-ST** | 86.36 | 87.53 | 65.35 | 90.67 | 90.56 | +| **CodeFeedBack-MT** | 65.51 | 68.83 | 28.74 | 93.58 | 94.38 | +| **AVG** | **75.65** | **78.20** | **56.26** | **78.53** | **81.77** | - CodedRAG -| | HummanEval | MBPP | DS-1000 | ODEX | RepoEval | SWE-bench-Lite | AVG | -| --------------- | ---------- | ---- | ------- | ---- | -------- | -------------- | ---- | +| | HummanEval | MBPP | DS-1000 | ODEX | RepoEval | SWE-bench-Lite | AVG | +| --------------- | ---------- | ---- | ------- | ---- | -------- | -------------- | -------- | | SFR | 100.0 | 99.0 | 19.3 | 37.1 | 83.8 | 62.7 | **67.0** | | Jina-v2-code | 100.0 | 97.7 | 26.2 | 19.9 | 90.5 | 58.3 | **65.4** | | CodeXEmbed-2B | 100.0 | 97.4 | 25.4 | 23.9 | 88.7 | 52.4 | **64.6** | | Voyage-Code-002 | 100.0 | 99.0 | 33.1 | 26.6 | 94.3 | 29.1 | **63.7** | -| BGE-Code-v1 | 100.0 | 99.2 | 40.9 | 36.1 | 93.1 | 67.4 | **72.8** | +| BGE-Code-v1 | 100.0 | 99.2 | 40.9 | 36.1 | 93.1 | 67.4 | **72.8** | ### Instructions for Evaluation @@ -200,21 +200,32 @@ print(scores.tolist()) #### CoIR -For CoIR, we use the [CoIR](https://github.com/CoIR-team/coir) evaluation script. +For CoIR, we use the [CoIR](https://github.com/CoIR-team/coir) evaluation script: -You can also evaluate the model using the following script: ```shell cd ./evaluation/coir_eval +### clone coir +mkdir test +cd ./test +git clone https://github.com/CoIR-team/coir.git +mv ./coir/coir ../ +cd .. +rm -rf ./test +### evaluate bash eval.sh ``` ### CodeRAG -For CodeRAG, we use the [CodeRAG](https://github.com/code-rag-bench/code-rag-bench) evaluation script. +For CodeRAG, we use the [CodeRAG](https://github.com/code-rag-bench/code-rag-bench) evaluation script: -You can also evaluate the model using the following script: ```shell cd ./evaluation/coderag_eval +### clone coderag +git clone https://github.com/code-rag-bench/code-rag-bench.git +## You need prepare environment according to README.md +rm -rf ./code-rag-bench/retrieval/create +cp -r ./test/* ./code-rag-bench/retrieval/ ### prepare data bash prepare_data.sh ### evaluate