mirror of
https://github.com/FlagOpen/FlagEmbedding.git
synced 2026-01-07 04:33:07 +00:00
bump version
This commit is contained in:
parent
8bbff810f1
commit
eab970b503
11
README.md
11
README.md
@ -32,18 +32,19 @@ FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following p
|
||||
|
||||
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
||||
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
||||
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
||||
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
||||
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
||||
|
||||
## News
|
||||
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), which have better performance and support multilingual and longer text.
|
||||
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data. :fire:
|
||||
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
||||
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
||||
[Technical Report](https://arxiv.org/pdf/2402.03216.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
||||
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
|
||||
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire:
|
||||
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
||||
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462)
|
||||
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
|
||||
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534)
|
||||
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
||||
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
||||
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
|
||||
|
||||
14
README_zh.md
14
README_zh.md
@ -31,17 +31,17 @@ FlagEmbedding专注于检索增强llm领域,目前包括以下项目:
|
||||
|
||||
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
||||
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
||||
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
||||
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
||||
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
||||
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
||||
|
||||
## 更新
|
||||
- 3/18/2024: 发布[Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual),该项目通过引入image token embedding赋予BGE视觉编码能力。Visualized-BGE可以对混合图文数据进行编码,用于广泛的混合模态检索任务。
|
||||
- 3/18/2024: 发布新的[rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), 更好对性能同时支持多语言和长文本。:fire:
|
||||
- 3/18/2024: 发布[Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual),该项目通过引入image token embedding赋予BGE视觉编码能力。Visualized-BGE可以对混合图文数据进行编码,用于广泛的混合模态检索任务。 :fire:
|
||||
- 1/30/2024: 发布**BGE-M3**, 第一个具有多功能、多语言和多粒度特性的文本检索模型,高效支持多语言(100+语言)、长文本(至多8192长度的输入文本)、和混合检索(稠密、稀疏、多向量)。 详见[report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf)和[代码](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) :fire:
|
||||
|
||||
- 1/9/2024: 发布[Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), 一个有效、高效、兼容、低成本(训练)的扩展大预言模型上下文长度的方法。[技术报告](https://arxiv.org/abs/2401.03462) :fire:
|
||||
- 12/24/2023: 发布**LLaRA**, 一个基于LLaMA-7B的稠密检索模型, MS MARCO与BEIR上取得了迄今最好的实验结果. 模型与代码将会陆续开源. 敬请关注. [技术报告](https://arxiv.org/abs/2312.15503) :fire:
|
||||
- 11/23/2023: 发布[LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), 一种通过模型融合在微调时保持原有模型通用能力的方法. [技术报告](https://arxiv.org/abs/2311.13534) :fire:
|
||||
- 1/9/2024: 发布[Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), 一个有效、高效、兼容、低成本(训练)的扩展大预言模型上下文长度的方法。[技术报告](https://arxiv.org/abs/2401.03462)
|
||||
- 12/24/2023: 发布**LLaRA**, 一个基于LLaMA-7B的稠密检索模型, MS MARCO与BEIR上取得了迄今最好的实验结果. 模型与代码将会陆续开源. 敬请关注. [技术报告](https://arxiv.org/abs/2312.15503)
|
||||
- 11/23/2023: 发布[LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), 一种通过模型融合在微调时保持原有模型通用能力的方法. [技术报告](https://arxiv.org/abs/2311.13534)
|
||||
- 10/12/2023: 发布 [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), 专为大语言模型**各种检索增强任务设计**的英文向量模型。[技术报告](https://arxiv.org/pdf/2310.07554.pdf)
|
||||
- 09/15/2023: 发布 [技术报告](https://arxiv.org/pdf/2309.07597.pdf) 和 [数据集](https://data.baai.ac.cn/details/BAAI-MTP).
|
||||
- 09/12/2023: 更新:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user