import os import json import logging import datasets from typing import List from accelerate import Accelerator from torch.utils.data import DataLoader from transformers import HfArgumentParser from dataclasses import dataclass, field, asdict from src.lm import ( LM, LMArgs, GenerationArgs ) from src.retrieval import ( RetrievalArgs, RetrievalMetric, ) from src.utils.util import makedirs, remove_eos, DefaultDataCollator, DatasetProcessFn, FileLogger from .eval_retrieval import main as retrieval_main logger = logging.getLogger(__name__) PROPID_2_TEMPLATE = { 22: "What is {}'s occupation?", 218: "In what city was {} born?", 91: "What genre is {}?", 257: "Who is the father of {}?", 182: "In what country is {}?", 164: "Who was the producer of {}?", 526: "Who was the director of {}?", 97: "What is {} the capital of?", 533: "Who was the screenwriter for {}?", 639: "Who was the composer of {}?", 472: "What color is {}?", 106: "What is the religion of {}?", 560: "What sport does {} play?", 484: "Who is the author of {}?", 292: "Who is the mother of {}?", 422: "What is the capital of {}?" } @dataclass class PopQAArgs(LMArgs, RetrievalArgs): output_dir: str = field( default="data/results/popqa", ) eval_data: str = field( default="llm-embedder:qa/popqa/test.json", metadata={'help': 'Path to the test file.'} ) few_shot: int = field( default=15, metadata={'help': 'How many few shot train samples?'}, ) hits: int = field( default=10, metadata={'help': 'How many hits per query?'}, ) key_num: int = field( default=3, metadata={'help': 'How many docs to provide in prompt?'}, ) corpus: str = field( default="llm-embedder:qa/nq/corpus.json", metadata={'help': 'Corpus path for retrieval.'} ) key_template: str = field( default="{title} {text}", metadata={'help': 'How to concatenate columns in the corpus to form one key?'} ) key_max_length: int = field( default=128, metadata={'help': 'How many tokens at maximum in a key.'} ) metrics: List[str] = field( default_factory=lambda: ["collate_key"], ) save_to_output: bool = field( default=True, metadata={'help': 'Save the result/key/negative to output_dir? If not true, they will be saved next to the eval_data.'} ) log_path: str = field( default="data/results/popqa/popqa.log", metadata={'help': 'Path to the file for logging.'} ) @dataclass class GenerationArgs(GenerationArgs): max_new_tokens: int = field( default=16, metadata={'help': 'Maximum new tokens to generate.'} ) eos_token_id: int = 13 def process_popqa(tokenizer, context_max_length=2048, key_num=3, few_shot=0, train_data=None, cache_dir=None, is_encoder_decoder=False): test = tokenizer("test", return_special_tokens_mask=True)["special_tokens_mask"] has_bos = has_eos = False if test[0] == 1: has_bos = True if test[-1] == 1: has_eos = True if few_shot > 0: assert train_data is not None assert few_shot // (len(PROPID_2_TEMPLATE) - 1), f"Make sure the number of few shot examples is a multiple of the template number!" train_dataset = datasets.load_dataset("json", data_files=train_data, cache_dir=cache_dir, split="train") train_df = train_dataset.to_pandas() train_df = {k: v[:few_shot] for k, v in train_df.groupby("prop_id")} nshot_per_template = few_shot // (len(PROPID_2_TEMPLATE) - 1) def _prepare_sample(query, obj=None, **kwds): sample = f"Q: {query} A:" if obj is not None: sample = sample + " " + obj return sample def _prepare_retrieval(keys): if keys is not None: keys = keys[:key_num] keys = "\n".join(keys) keys = f"Knowledge: {keys}" else: keys = "" return keys @DatasetProcessFn() def _process(query, query_id, prop_id, key=None, _index=None, **kwds): """Yield keys and query with a prompt template""" output = {} query = query.strip() knowledge = _prepare_retrieval(key) train_samples_max_length = context_max_length - len(tokenizer.encode("\n\n" if len(knowledge) else "" + _prepare_sample(query), add_special_tokens=False)) - int(has_bos) if few_shot > 0: train_samples = "" train_samples_length = 0 for k, df in train_df.items(): # avoid contamination if k == prop_id: continue for sample in df.sample(nshot_per_template).iloc: train_sample = _prepare_sample(**sample) + "\n\n" # make sure the length of training samples does not exceed maximum length if train_samples_length + len(tokenizer.encode(train_sample)) > train_samples_max_length: break else: train_samples += train_sample train_samples_length += len(tokenizer.encode(train_sample)) else: train_samples = "" left = knowledge # \n\n to split retrieved knowledge right = "\n\n" + train_samples + _prepare_sample(query) pair = tokenizer.encode(left, right, add_special_tokens=False, truncation="only_first", max_length=context_max_length - int(has_bos) - int(has_eos)) # strip spaces and \n in the head (when there is no retrieved passage) seq = tokenizer.decode(pair).strip() inputs = tokenizer(seq, return_token_type_ids=False) if has_eos and not is_encoder_decoder: inputs = remove_eos(inputs, tokenizer.eos_token_id) inputs["query_id"] = query_id for k, v in inputs.items(): output[k] = v return output return _process def evaluate_popqa(eval_data, save_path, **kwds): def compute_metric(eval_preds): makedirs(save_path) samples = {} with open(eval_data) as f: for line in f: sample = json.loads(line.strip()) samples[sample["query_id"]] = sample accuracy = 0 with open(save_path, "w") as f: for query_id, generation in zip(*eval_preds): sample = samples[query_id] answers = sample['possible_answers'] correct = False for answer in answers: # if any answer matches if answer in generation or answer.lower() in generation or answer.capitalize() in generation: correct = True break accuracy += int(correct) sample["output"] = generation f.write(json.dumps(sample, ensure_ascii=False) + "\n") accuracy /= len(eval_preds[0]) return {"accuracy": accuracy} return compute_metric def main(): parser = HfArgumentParser([PopQAArgs, GenerationArgs]) args, generation_args = parser.parse_args_into_dataclasses() accelerator = Accelerator(cpu=args.cpu) # modify the output_dir for retrieval if args.retrieval_method == "dense": output_dir = os.path.join(args.output_dir, args.query_encoder.strip(os.sep).replace(os.sep, "--")) else: output_dir = os.path.join(args.output_dir, args.retrieval_method) args.output_dir = output_dir if args.retrieval_method != "no": retrieval_main(args=args, accelerator=accelerator, log=False) eval_data = RetrievalMetric._get_save_path(args.eval_data, args.output_dir, field="key", save_name=args.save_name) else: eval_data = args.eval_data llm = LM( model_name_or_path=args.model_name_or_path, dtype=args.lm_dtype, device_map=args.lm_device_map, padding_side=args.padding_side, cache_dir=args.model_cache_dir, accelerator=accelerator, generation_args=asdict(generation_args) ) tokenizer = llm.tokenizer logging.info(f"Loading data from {eval_data}...") with accelerator.main_process_first(): dataset = datasets.load_dataset("json", data_files=eval_data, split="train", cache_dir=args.dataset_cache_dir) dataset = dataset.map(process_popqa( tokenizer, context_max_length=args.context_max_length, key_num=args.key_num, few_shot=args.few_shot, # popqa extracts few-shot examples from test data train_data=args.eval_data, cache_dir=args.dataset_cache_dir, is_encoder_decoder=llm.model.config.is_encoder_decoder ), remove_columns=dataset.column_names, batched=True, num_proc=32) data_collator = DefaultDataCollator(tokenizer=tokenizer, add_position_ids=args.add_position_ids) dataloader = DataLoader( dataset, batch_size=args.lm_batch_size, collate_fn=data_collator, pin_memory=True, ) dataloader = accelerator.prepare(dataloader) results = llm.generate(dataloader) if accelerator.process_index == 0: file_logger = FileLogger(makedirs(args.log_path)) result_path = os.path.join(args.output_dir, args.model_name_or_path.strip(os.sep).replace(os.sep, "--") + ".json") metrics = evaluate_popqa(eval_data, result_path)(results) file_logger.log(metrics, Args=asdict(args)) if __name__ == "__main__": main()