import os from FlagEmbedding import FlagModel def test_base(): model = FlagModel( 'BAAI/bge-small-en-v1.5', normalize_embeddings=True, use_fp16=True, query_instruction_for_retrieval="Represent this sentence for searching relevant passages: ", query_instruction_format="{}{}", pooling_method='cls', cache_dir=os.getenv('HF_HOME', None), ) queries = [ "What is the capital of France?", "What is the population of China?", ] passages = [ "Paris is the capital of France.", "The population of China is over 1.4 billion people." ] queries_embeddings = model.encode_queries(queries) passages_embeddings = model.encode_corpus(passages) cos_scores = queries_embeddings @ passages_embeddings.T print(cos_scores) if __name__ == '__main__': test_base()