import os from FlagEmbedding import FlagLLMModel def test_base_multi_devices(): model = FlagLLMModel( 'BAAI/bge-multilingual-gemma2', normalize_embeddings=True, use_fp16=True, query_instruction_for_retrieval="Given a question, retrieve passages that answer the question.", query_instruction_format="{}\n{}", devices=["cuda:0", "cuda:1"], # if you don't have GPUs, you can use ["cpu", "cpu"] cache_dir=os.getenv('HF_HUB_CACHE', None), ) queries = [ "What is the capital of France?", "What is the population of China?", ] * 100 passages = [ "Paris is the capital of France.", "The population of China is over 1.4 billion people." ] * 100 queries_embeddings = model.encode_queries(queries) passages_embeddings = model.encode_corpus(passages) cos_scores = queries_embeddings @ passages_embeddings.T print(cos_scores[:2, :2]) if __name__ == '__main__': test_base_multi_devices()