# 1. Introduction In this example, we show how to use scripts to make your fine-tuning process more convenient # 2. Installation ```shell git clone https://github.com/FlagOpen/FlagEmbedding.git cd FlagEmbedding/scripts ``` # 3. Usage ### Hard Negatives Hard negatives is a widely used method to improve the quality of sentence embedding. You can mine hard negatives following this command: ```shell python hn_mine.py \ --model_name_or_path BAAI/bge-base-en-v1.5 \ --input_file toy_finetune_data.jsonl \ --output_file toy_finetune_data_minedHN.jsonl \ --range_for_sampling 2-200 \ --negative_number 15 \ --use_gpu_for_searching ``` - **`input_file`**: json data for finetuning. This script will retrieve top-k documents for each query, and random sample negatives from the top-k documents (not including the positive documents). - **`output_file`**: path to save JSON data with mined hard negatives for finetuning - **`negative_number`**: the number of sampled negatives - **`range_for_sampling`**: where to sample negative. For example, `2-100` means sampling `negative_number` negatives from top2-top200 documents. **You can set larger value to reduce the difficulty of negatives (e.g., set it `60-300` to sample negatives from top60-300 passages)** - **`candidate_pool`**: The pool to retrieval. The default value is None, and this script will retrieve from the combination of all `neg` in `input_file`. The format of this file is the same as [pretrain data](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain#2-data-format). If input a candidate_pool, this script will retrieve negatives from this file. - **`use_gpu_for_searching`**: whether to use faiss-gpu to retrieve negatives. ### Teacher Scores Teacher scores can be used for model distillation. You can obtain the scores using the following command: ```shell python add_reranker_score.py \ --input_file toy_finetune_data_minedHN.jsonl \ --output_file toy_finetune_data_score.jsonl \ --range_for_sampling 2-200 \ --negative_number 15 \ --use_gpu_for_searching ``` - **`input_file`**: path to save JSON data with mined hard negatives for finetuning - **`output_file`**: path to save JSON data with scores for finetuning - **`use_fp16`**: Whether to use fp16 for inference. Default: True - **`devices`**: Devices to use for inference. Default: None, multiple values allowed - **`trust_remote_code`**: Trust remote code. Default: False - **`reranker_name_or_path`**: The reranker name or path. Default: None - **`reranker_model_class`**: The reranker model class. Available classes: ['auto', 'encoder-only-base', 'decoder-only-base', 'decoder-only-layerwise', 'decoder-only-lightweight']. Default: auto - **`reranker_peft_path`**: The reranker peft path. Default: None - **`use_bf16`**: Whether to use bf16 for inference. Default: False - **`query_instruction_for_rerank`**: Instruction for query. Default: None - **`query_instruction_format_for_rerank`**: Format for query instruction. Default: {{}{}} - **`passage_instruction_for_rerank`**: Instruction for passage. Default: None - **`passage_instruction_format_for_rerank`**: Format for passage instruction. Default: {{}{}} - **`cache_dir`**: Cache directory for models. Default: None - **`reranker_batch_size`**: Batch size for inference. Default: 3000 - **`reranker_query_max_length`**: Max length for reranking queries. Default: None - **`reranker_max_length`**: Max length for reranking. Default: 512 - **`normalize`**: Whether to normalize the reranking scores. Default: False - **`prompt`**: The prompt for the reranker. Default: None - **`cutoff_layers`**: The output layers of layerwise/lightweight reranker. Default: None - **`compress_ratio`**: The compress ratio of lightweight reranker. Default: 1 - **`compress_layers`**: The compress layers of lightweight reranker. Default: None, multiple values allowed ### Split Data by Length You can split the data using the following command: ```shell python split_data_by_length.py \ --input_path train_data \ --output_dir train_data_split \ --cache_dir .cache \ --log_name .split_log \ --length_list 0 500 1000 2000 3000 4000 5000 6000 7000 \ --model_name_or_path BAAI/bge-m3 \ --num_proc 16 \ --overwrite False ``` - **`input_path`**: The path of input data. (Required) - **`output_dir`**: The directory of output data. (Required) - **`cache_dir`**: The cache directory. Default: None - **`log_name`**: The name of the log file. Default: `.split_log`, which will be saved to `output_dir` - **`length_list`**: The length list to split. Default: [0, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000] - **`model_name_or_path`**: The model name or path of the tokenizer. Default: `BAAI/bge-m3` - **`num_proc`**: The number of processes. Default: 16 - **`overwrite`**: Whether to overwrite the output file. Default: False