2025-01-13 14:35:49 +08:00

387 lines
17 KiB
Markdown

# Finetune
In this example, we show how to finetune the embedder with your data.
- [1. Installation](#1-Installation)
- [2. Data format](#2-Data-format)
- [Hard Negatives](#Hard-Negatives)
- [Teacher Scores](#Teacher-Scores)
- [3. Train](#3-Train)
- [(1) standard model](#1-standard-model)
- [(2) bge-m3](#2-bge-m3)
- [(3) bge-multilingual-gemma2](#3-bge-multilingual-gemma2)
- [(4) bge-en-icl](#4-bge-en-icl)
## 1. Installation
- **with pip**
```shell
pip install -U FlagEmbedding[finetune]
```
- **from source**
```shell
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install .[finetune]
```
For development, install as editable:
```shell
pip install -e .[finetune]
```
## 2. Data format
Train data should be a json file, where each line is a dict like this:
```shell
{"query": str, "pos": List[str], "neg":List[str], "pos_scores": List[int], "neg_scores": List[int], "prompt": str, "type": str}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts. `pos_scores` is a list of scores corresponding to the `query` and `pos`, `neg_scores` is a list of scores corresponding to the `query` and `neg`, if you don't use knowledge distillation, it can be ignored. `prompt` is the prompt used for the query, it will cover `query_instruction_for_retrieval`. `type` is used for `bge-en-icl`, it includes `normal`, `symmetric_class`, `symmetric_clustering`, .etc. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
See [example_data](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune/embedder/example_data) for more detailed files.
### Hard Negatives
Hard negatives is a widely used method to improve the quality of sentence embedding. You can mine hard negatives following this command:
```shell
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding/scripts
```
```shell
python hn_mine.py \
--input_file toy_finetune_data.jsonl \
--output_file toy_finetune_data_minedHN.jsonl \
--range_for_sampling 2-200 \
--negative_number 15 \
--use_gpu_for_searching \
--embedder_name_or_path BAAI/bge-base-en-v1.5
```
- **`input_file`**: json data for finetuning. This script will retrieve top-k documents for each query, and random sample negatives from the top-k documents (not including the positive documents).
- **`output_file`**: path to save JSON data with mined hard negatives for finetuning
- **`negative_number`**: the number of sampled negatives
- **`range_for_sampling`**: where to sample negative. For example, `2-100` means sampling `negative_number` negatives from top2-top200 documents. **You can set larger value to reduce the difficulty of negatives (e.g., set it `60-300` to sample negatives from top60-300 passages)**
- **`candidate_pool`**: The pool to retrieval. The default value is None, and this script will retrieve from the combination of all `neg` in `input_file`. If provided, it should be a jsonl file, each line is a dict with a key `text`. If input a candidate_pool, this script will retrieve negatives from this file.
- **`use_gpu_for_searching`**: whether to use faiss-gpu to retrieve negatives.
- **`search_batch_size`**: batch size for searching. Default is 64.
- **`embedder_name_or_path`**: The name or path to the embedder.
- **`embedder_model_class`**: Class of the model used for embedding (current options include 'encoder-only-base', 'encoder-only-m3', 'decoder-only-base', 'decoder-only-icl'.). Default is None. For the custom model, you should set this argument.
- **`normalize_embeddings`**: Set to `True` to normalize embeddings.
- **`pooling_method`**: The pooling method for the embedder.
- **`use_fp16`**: Use FP16 precision for inference.
- **`devices`**: List of devices used for inference.
- **`query_instruction_for_retrieval`**, **`query_instruction_format_for_retrieval`**: Instructions and format for query during retrieval.
- **`examples_for_task`**, **`examples_instruction_format`**: Example tasks and their instructions format. This is only used when `embedder_model_class` is set to `decoder-only-icl`.
- **`trust_remote_code`**: Set to `True` to trust remote code execution.
- **`cache_dir`**: Cache directory for models.
- **`embedder_batch_size`**: Batch sizes for embedding and reranking.
- **`embedder_query_max_length`**, **`embedder_passage_max_length`**: Maximum length for embedding queries and passages.
### Teacher Scores
Teacher scores can be used for model distillation. You can obtain the scores using the following command:
```shell
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding/scripts
```
```shell
python add_reranker_score.py \
--input_file toy_finetune_data_minedHN.jsonl \
--output_file toy_finetune_data_score.jsonl \
--reranker_name_or_path BAAI/bge-reranker-v2-m3 \
--devices cuda:0 cuda:1 \
--cache_dir ./cache/model \
--reranker_query_max_length 512 \
--reranker_max_length 1024
```
- **`input_file`**: path to save JSON data with mined hard negatives for finetuning
- **`output_file`**: path to save JSON data with scores for finetuning
- **`use_fp16`**: Whether to use fp16 for inference. Default: True
- **`devices`**: Devices to use for inference. Default: None, multiple values allowed
- **`trust_remote_code`**: Trust remote code. Default: False
- **`reranker_name_or_path`**: The reranker name or path. Default: None
- **`reranker_model_class`**: The reranker model class. Available classes: ['auto', 'encoder-only-base', 'decoder-only-base', 'decoder-only-layerwise', 'decoder-only-lightweight']. Default: auto
- **`reranker_peft_path`**: The reranker peft path. Default: None
- **`use_bf16`**: Whether to use bf16 for inference. Default: False
- **`query_instruction_for_rerank`**: Instruction for query. Default: None
- **`query_instruction_format_for_rerank`**: Format for query instruction. Default: {{}{}}
- **`passage_instruction_for_rerank`**: Instruction for passage. Default: None
- **`passage_instruction_format_for_rerank`**: Format for passage instruction. Default: {{}{}}
- **`cache_dir`**: Cache directory for models. Default: None
- **`reranker_batch_size`**: Batch size for inference. Default: 3000
- **`reranker_query_max_length`**: Max length for reranking queries. Default: None
- **`reranker_max_length`**: Max length for reranking. Default: 512
- **`normalize`**: Whether to normalize the reranking scores. Default: False
- **`prompt`**: The prompt for the reranker. Default: None
- **`cutoff_layers`**: The output layers of layerwise/lightweight reranker. Default: None
- **`compress_ratio`**: The compress ratio of lightweight reranker. Default: 1
- **`compress_layers`**: The compress layers of lightweight reranker. Default: None, multiple values allowed
## 3. Train
Detailed examples of various fine-tuning can be found in the bash files located in the corresponding folders. Here, we simply provide the training methods for the `standard model`, `bge-m3`, `bge-multilingual-gemma2` and `bge-en-icl`.
Here are some import arguments:
- **`model_name_or_path`**: The model checkpoint for initialization.
- **`config_name`**: Pretrained config name or path if not the same as model_name.
- **`tokenizer_name`**: Pretrained tokenizer name or path if not the same as model_name.
- **`cache_dir`**: Where do you want to store the pre-trained models downloaded from s3.
- **`trust_remote_code`**: Trust remote code
- **`token`**: The token to use when accessing the model.
- **`train_data`**: One or more paths to training data. `query: str`, `pos: List[str]`, `neg: List[str]` are required in the training data. Argument type: multiple.
- **`cache_path`**: Where do you want to store the cached data.
- **`train_group_size`**: (No metadata provided)
- **`query_max_len`**: The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated.
- **`passage_max_len`**: The maximum total input sequence length after tokenization for passage. Sequences longer than this will be truncated.
- **`pad_to_multiple_of`**: If set will pad the sequence to be a multiple of the provided value.
- **`max_example_num_per_dataset`**: The max number of examples for each dataset.
- **`query_instruction_for_retrieval`**: Instruction for query.
- **`query_instruction_format`**: Format for query instruction.
- **`knowledge_distillation`**: Use knowledge distillation when `pos_scores: List[float]` and `neg_scores: List[float]` are in features of training data.
- **`passage_instruction_for_retrieval`**: Instruction for passage.
- **`passage_instruction_format`**: Format for passage instruction.
- **`shuffle_ratio`**: The ratio of shuffling the text.
- **`same_dataset_within_batch`**: All samples in the same batch comes from the same dataset.
- **`small_threshold`**: The threshold of small dataset. All small dataset in the same directory will be merged into one dataset.
- **`drop_threshold`**: The threshold for dropping merged small dataset. If the number of examples in the merged small dataset is less than this threshold, it will be dropped.
- **`negatives_cross_device`**: Share negatives across devices.
- **`temperature`**: Temperature used for similarity score.
- **`fix_position_embedding`**: Freeze the parameters of position embeddings.
- **`sentence_pooling_method`**: The pooling method. Available options: cls, mean, last_token. Default: cls.
- **`normalize_embeddings`**: Whether to normalize the embeddings.
- **`sub_batch_size`**: Sub batch size for training.
- **`kd_loss_type`**: The loss type for knowledge distillation. Available options: kl_div, m3_kd_loss. Default: kl_div.
### (1) standard model
```shell
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.encoder_only.base \
--model_name_or_path BAAI/bge-large-en-v1.5 \
--cache_dir ./cache/model \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Represent this sentence for searching relevant passages: ' \
--query_instruction_format '{}{}' \
--knowledge_distillation False \
--output_dir ./test_encoder_only_base_bge-large-en-v1.5 \
--overwrite_output_dir \
--learning_rate 1e-5 \
--fp16 \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage0.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method cls \
--normalize_embeddings True \
--kd_loss_type kl_div
```
### (2) bge-m3
```shell
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.encoder_only.m3 \
--model_name_or_path BAAI/bge-m3 \
--cache_dir ./cache/model \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--output_dir ./test_encoder_only_m3_bge-m3_sd \
--overwrite_output_dir \
--learning_rate 1e-5 \
--fp16 \
--num_train_epochs 2 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage0.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method cls \
--normalize_embeddings True \
--kd_loss_type m3_kd_loss \
--unified_finetuning True \
--use_self_distill True \
--fix_encoder False \
--self_distill_start_step 0
```
Here are some new arguments:
- **`colbert_dim`**: Dim of colbert linear
- **`unified_finetuning`**: Use unify fine-tuning
- **`use_self_distill`**: Use self-distill when using unify fine-tuning
- **`fix_encoder`**: Freeze the parameters of encoder
- **`self_distill_start_step`**: Num of step when using self-distill
### (3) bge-multilingual-gemma2
```shell
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.decoder_only.base \
--model_name_or_path BAAI/bge-multilingual-gemma2 \
--cache_dir ./cache/model \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--target_modules q_proj k_proj v_proj o_proj gate_proj down_proj up_proj \
--additional_special_tokens '<instruct>' '<query>' \
--save_merged_lora_model True \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 512 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Given a query, retrieve passages that are relevant to the query.' \
--query_instruction_format '<instruct>{}\n<query>{}' \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--output_dir ./test_decoder_only_base_bge-multilingual-gemma2_sd \
--overwrite_output_dir \
--learning_rate 1e-4 \
--fp16 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage1.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method last_token \
--normalize_embeddings True \
--kd_loss_type m3_kd_loss
```
Here are some new arguments:
- **`peft_model_path`**: The peft model checkpoint for initialization.
- **`use_lora`**: If passed, will use LORA (low-rank parameter-efficient training) to train the model.
- **`lora_rank`**: The rank of lora.
- **`lora_alpha`**: The alpha parameter of lora.
- **`lora_dropout`**: The dropout rate of lora modules.
- **`target_modules`**: The target modules to apply LORA.
- **`use_flash_attn`**: If passed, will use flash attention to train the model.
- **`use_slow_tokenizer`**: If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).
- **`additional_special_tokens`**: Additional special tokens.
- **`save_merged_lora_model`**: If passed, will merge the lora modules and save the entire model.
### (4) bge-en-icl
```shell
torchrun --nproc_per_node 2 \
-m FlagEmbedding.finetune.embedder.decoder_only.icl \
--model_name_or_path BAAI/bge-en-icl \
--cache_dir ./cache/model \
--use_lora True \
--lora_rank 32 \
--lora_alpha 64 \
--target_modules q_proj k_proj v_proj o_proj gate_proj down_proj up_proj \
--additional_special_tokens '<instruct>' '<query>' '<response>' \
--save_merged_lora_model True \
--train_data ./example_data/retrieval \
./example_data/sts/sts.jsonl \
./example_data/classification-no_in_batch_neg \
./example_data/clustering-no_in_batch_neg \
--cache_path ./cache/data \
--train_group_size 8 \
--query_max_len 2048 \
--passage_max_len 512 \
--pad_to_multiple_of 8 \
--query_instruction_for_retrieval 'Given a query, retrieve passages that are relevant to the query.' \
--query_instruction_format '<instruct>{}\n<query>{}' \
--knowledge_distillation True \
--same_dataset_within_batch True \
--small_threshold 0 \
--drop_threshold 0 \
--example_query_max_len 256 \
--example_passage_max_len 256 \
--retrieval_use_examples True \
--icl_suffix_str '\n<response>' \
--output_dir ./test_decoder_only_base_bge-en-icl_sd \
--overwrite_output_dir \
--learning_rate 1e-4 \
--fp16 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--warmup_ratio 0.1 \
--gradient_checkpointing \
--deepspeed ../ds_stage1.json \
--logging_steps 1 \
--save_steps 1000 \
--negatives_cross_device \
--temperature 0.02 \
--sentence_pooling_method last_token \
--normalize_embeddings True \
--kd_loss_type kl_div
```
Here are some new arguments:
- **`peft_model_path`**: The peft model checkpoint for initialization.
- **`use_lora`**: If passed, will use LORA (low-rank parameter-efficient training) to train the model.
- **`lora_rank`**: The rank of LORA.
- **`lora_alpha`**: The alpha parameter of LORA.
- **`lora_dropout`**: The dropout rate of LORA modules.
- **`target_modules`**: The target modules to apply LORA.
- **`use_flash_attn`**: If passed, will use flash attention to train the model.
- **`use_slow_tokenizer`**: If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).
- **`from_peft`** (no metadata provided)
- **`modules_to_save`** (no metadata provided)
- **`raw_peft`** (no metadata provided)
- **`additional_special_tokens`**: additional special tokens
- **`save_merged_lora_model`**: If passed, will merge the LORA modules and save the entire model.
- **`example_query_max_len`**: The max length of example query.
- **`example_passage_max_len`**: The max length of example passage.
- **`retrieval_use_examples`**: If passed, will use examples for retrieval.
- **`icl_suffix_str`**: The suffix string for ICL dataset.