2024-10-27 20:28:57 +08:00

236 lines
7.5 KiB
Python

import os
import json
import logging
import datasets
import random
from typing import List
from accelerate import Accelerator
from torch.utils.data import DataLoader
from transformers import HfArgumentParser
from dataclasses import dataclass, field, asdict
from src.lm import (
LM,
LMArgs,
GenerationArgs
)
from src.retrieval import (
RetrievalArgs,
RetrievalMetric,
)
from src.utils.util import makedirs, remove_eos, normalize_text, DefaultDataCollator, DatasetProcessFn, FileLogger
from .eval_retrieval import main as retrieval_main
from .icl_utils import compute_metrics
logger = logging.getLogger(__name__)
@dataclass
class QRECCArgs(LMArgs, RetrievalArgs):
output_dir: str = field(
default="data/results/qrecc",
)
eval_data: str = field(
default="llm-embedder:convsearch/qrecc/test.concat.json",
metadata={'help': 'Query jsonl.'}
)
corpus: str = field(
default="llm-embedder:convsearch/qrecc/corpus.json",
metadata={'help': 'Corpus path for retrieval.'}
)
key_template: str = field(
default="{text}",
metadata={'help': 'How to concatenate columns in the corpus to form one key?'}
)
do_generate: bool = field(
default=False,
metadata={'help': 'Generate for computing qa metrics?'}
)
hits: int = field(
default=100,
metadata={'help': 'How many hits per query?'},
)
key_num: int = field(
default=3,
metadata={'help': 'How many docs to provide in prompt?'},
)
metrics: List[str] = field(
default_factory=lambda: ["ndcg", "recall", "collate_key"],
)
cutoffs: List[int] = field(
default_factory=lambda: [3, 10, 100],
metadata={'help': 'Cutoffs to evaluate retrieval metrics.'}
)
max_neg_num: int = field(
default=32,
metadata={'help': 'Maximum negative number to mine.'}
)
save_to_output: bool = field(
default=True,
metadata={'help': 'Save the result/key/negative to output_dir? If not true, they will be saved next to the eval_data.'}
)
log_path: str = field(
default="data/results/qrecc/qrecc.log",
metadata={'help': 'Path to the file for logging.'}
)
@dataclass
class GenerationArgs(GenerationArgs):
max_new_tokens: int = field(
default=128,
metadata={'help': 'Maximum new tokens to generate.'}
)
eos_token_id: int = 13
def process_qrecc(tokenizer, context_max_length=2048, key_num=3, is_encoder_decoder=False):
test = tokenizer("test", return_special_tokens_mask=True)["special_tokens_mask"]
has_bos = has_eos = False
if test[0] == 1:
has_bos = True
if test[-1] == 1:
has_eos = True
def _prepare_sample(query, answers=None, **kwds):
sample = f"Context and Question: {query}\nAnswer:"
if answers is not None:
sample = sample + " " + random.choice(answers)
return sample
def _prepare_retrieval(keys):
if keys is not None:
keys = keys[:key_num]
keys = "\n".join(keys)
knowledge = f"Knowledge: {keys}"
else:
knowledge = ""
return knowledge
@DatasetProcessFn()
def _process(query, query_id, key=None, **kwds):
"""Yield keys and query with a prompt template"""
output = {}
query = query.strip()
knowledge = _prepare_retrieval(key)
left = knowledge
# \n\n to split retrieved knowledge
right = "\n\n" + _prepare_sample(query)
pair = tokenizer.encode(left, right, add_special_tokens=False, truncation="only_first", max_length=context_max_length - int(has_bos) - int(has_eos))
# strip spaces and \n in the head (when there is no retrieved passage)
seq = tokenizer.decode(pair).strip()
inputs = tokenizer(seq, return_token_type_ids=False)
if has_eos and not is_encoder_decoder:
inputs = remove_eos(inputs, tokenizer.eos_token_id)
inputs["query_id"] = query_id
for k, v in inputs.items():
output[k] = v
return output
return _process
def evaluate_qrecc(eval_data, save_path, **kwds):
def compute_metric(eval_preds):
makedirs(save_path)
samples = {}
with open(eval_data) as f:
for line in f:
sample = json.loads(line.strip())
samples[sample["query_id"]] = sample["answers"][0]
preds = []
answers = []
with open(save_path, "w") as f:
for query_id, generation in zip(*eval_preds):
answer = samples[query_id]
preds.append(generation)
answers.append(answer)
sample["output"] = generation
f.write(json.dumps(sample, ensure_ascii=False) + "\n")
rouge_l = compute_metrics("rl", labels=answers, preds=preds)
return rouge_l
return compute_metric
def main():
parser = HfArgumentParser([QRECCArgs, GenerationArgs])
args, generation_args = parser.parse_args_into_dataclasses()
accelerator = Accelerator(cpu=args.cpu)
# modify the output_dir for retrieval
if args.retrieval_method == "dense":
output_dir = os.path.join(args.output_dir, args.query_encoder.strip(os.sep).replace(os.sep, "--"))
else:
output_dir = os.path.join(args.output_dir, args.retrieval_method)
args.output_dir = output_dir
if args.retrieval_method != "no":
# retrieval metrics computes ndcg and recall
_, _, metrics = retrieval_main(args=args, accelerator=accelerator, log=False)
eval_data = RetrievalMetric._get_save_path(args.eval_data, args.output_dir, field="key", save_name=args.save_name)
else:
eval_data = args.eval_data
metrics = {}
if args.do_generate:
llm = LM(
model_name_or_path=args.model_name_or_path,
dtype=args.lm_dtype,
device_map=args.lm_device_map,
padding_side=args.padding_side,
cache_dir=args.model_cache_dir,
accelerator=accelerator,
generation_args=asdict(generation_args)
)
tokenizer = llm.tokenizer
logging.info(f"Loading data from {eval_data}...")
with accelerator.main_process_first():
dataset = datasets.load_dataset("json", data_files=eval_data, split="train", cache_dir=args.dataset_cache_dir)
dataset = dataset.map(process_qrecc(
tokenizer,
context_max_length=args.context_max_length,
key_num=args.key_num,
is_encoder_decoder=llm.model.config.is_encoder_decoder
), remove_columns=dataset.column_names, batched=True, num_proc=32)
data_collator = DefaultDataCollator(tokenizer=tokenizer, add_position_ids=args.add_position_ids)
dataloader = DataLoader(
dataset,
batch_size=args.lm_batch_size,
collate_fn=data_collator,
pin_memory=True,
)
dataloader = accelerator.prepare(dataloader)
results = llm.generate(dataloader)
if accelerator.process_index == 0:
result_path = os.path.join(args.output_dir, args.model_name_or_path.strip(os.sep).replace(os.sep, "--") + ".json")
lm_metrics = evaluate_qrecc(eval_data, result_path)(results)
else:
lm_metrics = {}
if accelerator.process_index == 0:
file_logger = FileLogger(makedirs(args.log_path))
metrics.update(lm_metrics)
file_logger.log(metrics, Args=asdict(args))
if __name__ == "__main__":
main()