2024-10-16 19:14:36 +08:00

43 lines
1.4 KiB
Python

import os
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataArguments:
train_data: str = field(
default=None, metadata={"help": "Path to corpus"}
)
train_group_size: int = field(default=8)
max_len: int = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization for input text. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
def __post_init__(self):
if not os.path.exists(self.train_data):
raise FileNotFoundError(f"cannot find file: {self.train_data}, please set a true path")