2024-10-16 19:14:36 +08:00

96 lines
2.9 KiB
Python

import logging
import os
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, TrainingArguments
from transformers import (
HfArgumentParser,
set_seed,
)
from .arguments import ModelArguments, DataArguments
from .data import TrainDatasetForCE, GroupCollator
from .modeling import CrossEncoder
from .trainer import CETrainer
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("Model parameters %s", model_args)
logger.info("Data parameters %s", data_args)
set_seed(training_args.seed)
num_labels = 1
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=False,
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
)
_model_class = CrossEncoder
model = _model_class.from_pretrained(
model_args, data_args, training_args,
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
train_dataset = TrainDatasetForCE(data_args, tokenizer=tokenizer)
_trainer_class = CETrainer
trainer = _trainer_class(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=GroupCollator(tokenizer),
tokenizer=tokenizer
)
Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
trainer.train()
trainer.save_model()
if __name__ == "__main__":
main()