2024-10-19 20:48:46 +08:00

39 lines
1.1 KiB
Python

import os
from FlagEmbedding import FlagModel
def test_base_multi_devices():
model = FlagModel(
'BAAI/bge-small-en-v1.5',
normalize_embeddings=True,
use_fp16=True,
query_instruction_for_retrieval="Represent this sentence for searching relevant passages: ",
query_instruction_format="{}{}",
devices=["cuda:0", "cuda:1"], # if you don't have GPUs, you can use ["cpu", "cpu"]
pooling_method='cls',
cache_dir=os.getenv('HF_HUB_CACHE', None),
)
queries = [
"What is the capital of France?",
"What is the population of China?",
] * 100
passages = [
"Paris is the capital of France.",
"The population of China is over 1.4 billion people."
] * 100
queries_embeddings = model.encode_queries(queries)
passages_embeddings = model.encode_corpus(passages)
cos_scores = queries_embeddings @ passages_embeddings.T
print(cos_scores[:2, :2])
if __name__ == '__main__':
test_base_multi_devices()
print("--------------------------------")
print("Expected Output:")
print("[[0.7944 0.4492]\n [0.5806 0.801 ]]")