2023-08-03 11:16:51 +08:00

129 lines
4.7 KiB
Python

import logging
import os
import sys
import transformers
from transformers import (
AutoTokenizer,
BertForMaskedLM,
AutoConfig,
HfArgumentParser, set_seed, )
from transformers import (
TrainerCallback,
TrainingArguments,
TrainerState,
TrainerControl
)
from transformers.trainer_utils import is_main_process
from .arguments import DataTrainingArguments, ModelArguments
from .data import DatasetForPretraining, RetroMAECollator
from .modeling import RetroMAEForPretraining
from .trainer import PreTrainer
logger = logging.getLogger(__name__)
class TrainerCallbackForSaving(TrainerCallback):
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of an epoch.
"""
control.should_save = True
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
model_args: ModelArguments
data_args: DataTrainingArguments
training_args: TrainingArguments
training_args.remove_unused_columns = False
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
if training_args.local_rank in (0, -1):
logger.info("Training/evaluation parameters %s", training_args)
logger.info("Model parameters %s", model_args)
logger.info("Data parameters %s", data_args)
set_seed(training_args.seed)
model_class = RetroMAEForPretraining
collator_class = RetroMAECollator
if model_args.model_name_or_path:
model = model_class.from_pretrained(model_args, model_args.model_name_or_path)
logger.info(f"------Load model from {model_args.model_name_or_path}------")
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
elif model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name)
bert = BertForMaskedLM(config)
model = model_class(bert, model_args)
logger.info("------Init the model------")
tokenizer = AutoTokenizer.from_pretrained(data_args.tokenizer_name)
else:
raise ValueError("You must provide the model_name_or_path or config_name")
dataset = DatasetForPretraining(data_args.train_data)
data_collator = collator_class(tokenizer,
encoder_mlm_probability=data_args.encoder_mlm_probability,
decoder_mlm_probability=data_args.decoder_mlm_probability,
max_seq_length=data_args.max_seq_length)
# Initialize our Trainer
trainer = PreTrainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
tokenizer=tokenizer
)
trainer.add_callback(TrainerCallbackForSaving())
# # Training
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
if __name__ == "__main__":
main()