2025-05-22 18:06:43 +08:00

129 lines
4.9 KiB
Python

import logging
from typing import Tuple
from transformers import (
AutoModel, AutoConfig,
AutoTokenizer, PreTrainedTokenizer
)
from FlagEmbedding.abc.finetune.embedder import AbsEmbedderRunner, AbsEmbedderModel, EmbedderTrainerCallbackForDataRefresh, AbsEmbedderModelArguments, AbsEmbedderTrainingArguments
from modeling import BiIREmbedderModel
from trainer import IREmbedderTrainer
from dataset import (
IREmbedderTrainDataset, IREmbedderCollator,
IREmbedderSameDatasetTrainDataset, IREmbedderSameDatasetCollator
)
logger = logging.getLogger(__name__)
class IREmbedderRunner(AbsEmbedderRunner):
"""
Finetune Runner for base embedding models.
"""
def load_train_dataset(self):
if self.data_args.same_dataset_within_batch:
train_dataset = IREmbedderSameDatasetTrainDataset(
args=self.data_args,
default_batch_size=self.training_args.per_device_train_batch_size,
seed=self.training_args.seed,
tokenizer=self.tokenizer,
process_index=self.training_args.process_index,
num_processes=self.training_args.world_size
)
self.training_args.per_device_train_batch_size = 1
self.training_args.dataloader_num_workers = 0 # avoid multi-processing
else:
train_dataset = IREmbedderTrainDataset(
args=self.data_args,
tokenizer=self.tokenizer
)
return train_dataset
def load_data_collator(self):
if self.data_args.same_dataset_within_batch:
EmbedCollator = IREmbedderSameDatasetCollator
else:
EmbedCollator = IREmbedderTrainDataset
data_collator = EmbedCollator(
tokenizer=self.tokenizer,
query_max_len=self.data_args.query_max_len,
passage_max_len=self.data_args.passage_max_len,
sub_batch_size=self.training_args.sub_batch_size,
pad_to_multiple_of=self.data_args.pad_to_multiple_of,
padding=True,
return_tensors="pt"
)
return data_collator
def load_tokenizer_and_model(self) -> Tuple[PreTrainedTokenizer, AbsEmbedderModel, AbsEmbedderModel]:
"""Load tokenizer and model.
Returns:
Tuple[PreTrainedTokenizer, AbsEmbedderModel]: Tokenizer and model instances.
"""
tokenizer = AutoTokenizer.from_pretrained(
self.model_args.model_name_or_path,
cache_dir=self.model_args.cache_dir,
token=self.model_args.token,
trust_remote_code=self.model_args.trust_remote_code
)
base_model = AutoModel.from_pretrained(
self.model_args.model_name_or_path,
cache_dir=self.model_args.cache_dir,
token=self.model_args.token,
trust_remote_code=self.model_args.trust_remote_code
)
num_labels = 1
config = AutoConfig.from_pretrained(
self.model_args.config_name if self.model_args.config_name else self.model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=self.model_args.cache_dir,
token=self.model_args.token,
trust_remote_code=self.model_args.trust_remote_code,
)
logger.info('Config: %s', config)
model = BiIREmbedderModel(
base_model,
tokenizer=tokenizer,
negatives_cross_device=self.training_args.negatives_cross_device,
temperature=self.training_args.temperature,
answer_temperature=self.training_args.answer_temperature,
sub_batch_size=self.training_args.sub_batch_size,
kd_loss_type=self.training_args.kd_loss_type,
sentence_pooling_method=self.training_args.sentence_pooling_method,
normalize_embeddings=self.training_args.normalize_embeddings,
normalize_answer=self.training_args.normalize_answer,
training_type=self.training_args.training_type
)
if self.training_args.gradient_checkpointing:
model.enable_input_require_grads()
if self.training_args.fix_position_embedding:
for k, v in model.named_parameters():
if "position_embeddings" in k:
logging.info(f"Freeze the parameters for {k}")
v.requires_grad = False
return tokenizer, model
def load_trainer(self) -> IREmbedderTrainer:
"""Load the trainer.
Returns:
IREmbedderTrainer: Loaded trainer instance.
"""
trainer = IREmbedderTrainer(
model=self.model,
args=self.training_args,
train_dataset=self.train_dataset,
data_collator=self.data_collator,
tokenizer=self.tokenizer
)
if self.data_args.same_dataset_within_batch:
trainer.add_callback(EmbedderTrainerCallbackForDataRefresh(self.train_dataset))
return trainer