mirror of
https://github.com/OpenSPG/KAG.git
synced 2025-07-26 18:40:39 +00:00
97 lines
4.0 KiB
Python
97 lines
4.0 KiB
Python
![]() |
# -*- coding: utf-8 -*-
|
||
|
# Copyright 2023 OpenSPG Authors
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed under the License
|
||
|
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
||
|
# or implied.
|
||
|
import os
|
||
|
from collections import defaultdict
|
||
|
from typing import List
|
||
|
|
||
|
from kag.builder.model.sub_graph import SubGraph
|
||
|
from knext.common.base.runnable import Input, Output
|
||
|
from kag.common.vectorizer import Vectorizer, Neo4jBatchVectorizer
|
||
|
from kag.interface.builder.vectorizer_abc import VectorizerABC
|
||
|
from knext.schema.client import SchemaClient
|
||
|
from knext.project.client import ProjectClient
|
||
|
from knext.schema.model.base import IndexTypeEnum
|
||
|
|
||
|
|
||
|
class BatchVectorizer(VectorizerABC):
|
||
|
|
||
|
def __init__(self, project_id: str = None, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.project_id = project_id or os.getenv("KAG_PROJECT_ID")
|
||
|
self._init_graph_store()
|
||
|
self.vec_meta = self._init_vec_meta()
|
||
|
self.vectorizer = Vectorizer.from_config(self.vectorizer_config)
|
||
|
|
||
|
def _init_graph_store(self):
|
||
|
"""
|
||
|
Initializes the Graph Store client.
|
||
|
|
||
|
This method retrieves the graph store configuration from environment variables and the project ID.
|
||
|
It then fetches the project configuration using the project ID and updates the graph store configuration
|
||
|
with any additional settings from the project. Finally, it creates and initializes the graph store client
|
||
|
using the updated configuration.
|
||
|
|
||
|
Args:
|
||
|
project_id (str): The id of project.
|
||
|
|
||
|
Returns:
|
||
|
GraphStore
|
||
|
"""
|
||
|
graph_store_config = eval(os.getenv("KAG_GRAPH_STORE", "{}"))
|
||
|
vectorizer_config = eval(os.getenv("KAG_VECTORIZER", "{}"))
|
||
|
config = ProjectClient().get_config(self.project_id)
|
||
|
graph_store_config.update(config.get("graph_store", {}))
|
||
|
vectorizer_config.update(config.get("vectorizer", {}))
|
||
|
self.vectorizer_config = vectorizer_config
|
||
|
|
||
|
def _init_vec_meta(self):
|
||
|
vec_meta = defaultdict(list)
|
||
|
schema_client = SchemaClient(project_id=self.project_id)
|
||
|
spg_types = schema_client.load()
|
||
|
for type_name, spg_type in spg_types.items():
|
||
|
for prop_name, prop in spg_type.properties.items():
|
||
|
if prop_name == "name" or prop.index_type in [IndexTypeEnum.Vector, IndexTypeEnum.TextAndVector]:
|
||
|
vec_meta[type_name].append(self._create_vector_field_name(prop_name))
|
||
|
return vec_meta
|
||
|
|
||
|
def _create_vector_field_name(self, property_key):
|
||
|
from kag.common.utils import to_snake_case
|
||
|
|
||
|
name = f"{property_key}_vector"
|
||
|
name = to_snake_case(name)
|
||
|
return "_" + name
|
||
|
|
||
|
def _neo4j_batch_vectorize(self, vectorizer: Vectorizer, input: SubGraph) -> SubGraph:
|
||
|
node_list = []
|
||
|
node_batch = []
|
||
|
for node in input.nodes:
|
||
|
if not node.id or not node.name:
|
||
|
continue
|
||
|
properties = {"id": node.id, "name": node.name}
|
||
|
properties.update(node.properties)
|
||
|
node_list.append((node, properties))
|
||
|
node_batch.append((node.label, properties.copy()))
|
||
|
batch_vectorizer = Neo4jBatchVectorizer(vectorizer, self.vec_meta)
|
||
|
batch_vectorizer.batch_vectorize(node_batch)
|
||
|
for (node, properties), (_node_label, new_properties) in zip(
|
||
|
node_list, node_batch
|
||
|
):
|
||
|
for key, value in properties.items():
|
||
|
if key in new_properties and new_properties[key] == value:
|
||
|
del new_properties[key]
|
||
|
node.properties.update(new_properties)
|
||
|
return input
|
||
|
|
||
|
def invoke(self, input: Input, **kwargs) -> List[Output]:
|
||
|
modified_input = self._neo4j_batch_vectorize(self.vectorizer, input)
|
||
|
return [modified_input]
|