KAG/kag/solver/executor/mock_executors.py
zhuzhongshu123 c1a332ced1 feat(kag): update to v0.7 (#456)
* add think cost

* update csv scanner

* add final rerank

* add reasoner

* add iterative planner

* fix dpr search

* fix dpr search

* add reference data

* move odps import

* update requirement.txt

* update 2wiki

* add missing file

* fix markdown reader

* add iterative planning

* update version

* update runner

* update 2wiki example

* update bridge

* merge solver and solver_new

* add cur day

* writer delete

* update multi process

* add missing files

* fix report

* add chunk retrieved executor

* update try in stream runner result

* add path

* add math executor

* update hotpotqa example

* remove log

* fix python coder solver

* update hotpotqa example

* fix python coder solver

* update config

* fix bad

* add log

* remove unused code

* commit with task thought

* move kag model to common

* add default chat llm

* fix

* use static planner

* support chunk graph node

* add args

* support naive rag

* llm client support tool calls

* add default async

* add openai

* fix result

* fix markdown reader

* fix thinker

* update asyncio interface

* feat(solver): add mcp support (#444)

* 上传mcp client相关代码

* 1、完成一套mcp client的调用,从pipeline到planner、executor
2、允许json中传入多个mcp_server,通过大模型进行调用并选择
3、调通baidu_map_mcp的使用

* 1、schema

* bugfix:删减冗余代码

---------

Co-authored-by: wanxingyu.wxy <wanxingyu.wxy@antgroup.com>

* fix affairqa after solver refactor

* fix affairqa after solver refactor

* fix readme

* add params

* update version

* update mcp executor

* update mcp executor

* solver add mcp executor

* add missing file

* add mpc executor

* add executor

* x

* update

* fix requirement

* fix main llm config

* fix solver

* bugfix:修复invoke函数调用逻辑

* chg eva

* update example

* add kag layer

* add step task

* support dot refresh

* support dot refresh

* support dot refresh

* support dot refresh

* add retrieved num

* add retrieved num

* add pipelineconf

* update ppr

* update musique prompts

* update

* add to_dict for BuilderComponentData

* async build

* add deduce prompt

* add deduce prompt

* add deduce prompt

* fix reader

* add deduce prompt

* add page thinker report

* modify prmpt

* add step status

* add self cognition

* add self cognition

* add memory graph storage

* add now time

* update memory config

* add now time

* chg graph loader

* 添加prqa数据集和代码

* bugfix:prqa调用逻辑修复

* optimize:优化代码逻辑,生成答案规范化

* add retry py code

* update memory graph

* update memory graph

* fix

* fix ner

* add with_out_refer generator prompt

* fix

* close ckpt

* fix query

* fix query

* update version

* add llm checker

* add llm checker

* 1、上传evalutor.py以及修改gold_answer.json格式
2、优化代码逻辑
3、修改README.md文件

* update exp

* update exp

* rerank support

* add static rewrite query

* recall more chunks

* fix graph load

* add static rewrite query

* fix bugs

* add finish check

* add finish check

* add finish check

* add finish check

* 1、上传evalutor.py的结果
2、优化代码逻辑,优化readme文件

* add lf retry

* add memory graph api

* fix reader api

* add ner

* add metrics

* fix bug

* remove ner

* add reraise fo retry

* add edge prop to memory graph

* add memory graph

* 1、评测数据集结果修正
2、优化evaluator.py代码
3、删除结果不存在而gold_answer中有答案的问题

* 删除评测结果文件

* fix knext host addr

* async eva

* add lf prompt

* add lf prompt

* add config

* add retry

* add unknown check

* add rc result

* add rc result

* add rc result

* add rc result

* 依据kag pipeline格式修改代码逻辑并通过测试

* bugfix:删除冗余代码

* fix report prompt

* bugfix:触发重试机制

* bugfix:中文符号错误

* fix rethinker prompt

* update version to 0.6.2b78

* update version

* 1、修改evaluator.py,通过大模型计算准确率,符合最新调用逻辑
2、修改prompt,让没有回答的结果重复测试

* update affairqa for evaluate

* update affairqa for evaluate

* bugfix:修正数据集

* bugfix:修正数据集

* bugfix:修正数据集

* fix name conflict

* bugfix:删除错误问题

* bugfix:文件名命名错误导致evaluator失败

* update for affairqa eval

* bugfix:修改代码保持evaluate逻辑一致

* x

* update for affairqa readme

* remove temp eval scripts

* bugfix for math deduce

* merge 0.6.2_dev

* merge 0.6.2_dev

* fix

* update client addr

* updated version

* update for affairqa eval

* evaUtils 支持中文

* fix affairqa eval:

* remove unused example

* update kag config

* fix default value

* update readme

* fix init

* 注释信息修改,并添加部分class说明

* update example config

* Tc 0.7.0 (#459)

* 提交affairQA 代码

* fix affairqa eval

---------

Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com>

* fix all examples

* reformat

---------

Co-authored-by: peilong <peilong.zpl@antgroup.com>
Co-authored-by: 锦呈 <zhangxinhong.zxh@antgroup.com>
Co-authored-by: wanxingyu.wxy <wanxingyu.wxy@antgroup.com>
Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com>
2025-04-17 17:23:52 +08:00

224 lines
8.0 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# Copyright 2023 OpenSPG Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied.
from kag.interface import ExecutorABC, Task, Context, LLMClient
@ExecutorABC.register("mock_retriever_executor")
class MockRetrieverExecutor(ExecutorABC):
@property
def category(self):
return "Retriever"
def invoke(self, query: str, task: Task, context: Context, **kwargs):
"""Retrieval of user query from a knowledge base.
Args:
query: User query triggering the retrieval
task: Task instance containing execution parameters
context: Pipeline execution context with dependency tracking
**kwargs: Additional execution parameters
Returns:
List of strings containing mock financial data entries
"""
result = [
"截至2025年3月12日余额宝的七日年化收益率为1.39%。这一收益率在过去几年中经历了显著下降。例如2024年初时余额宝的7日年化收益率可能在2%左右但随后逐步下降到2025年1月12日首次跌破1.2%,创下成立以来的最低值‌。",
"余额宝的收益率波动主要受市场利率环境的影响。货币基金的收益率通常与市场利率紧密相关,而市场利率的变化受多种经济因素影响,包括货币政策、市场流动性和经济周期等‌。因此,投资者在选择理财产品时,需要关注这些因素的变化,以判断收益率的未来趋势",
]
task.result = result
return result
async def ainvoke(self, query: str, task: Task, context: Context, **kwargs):
"""Asynchronous retrieval of user query from a knowledge base.
Args:
query: User query triggering the retrieval
task: Task instance containing execution parameters
context: Pipeline execution context with dependency tracking
**kwargs: Additional execution parameters
Returns:
List of strings containing mock financial data entries
"""
return self.invoke(query, task, context, **kwargs)
def schema(self):
return {
"name": "Retriever",
"description": "Retrieve relevant knowledge from the local knowledge base.",
"parameters": {
"query": {
"type": "string",
"description": "User-provided query for retrieval.",
"optional": False,
},
},
}
@ExecutorABC.register("mock_math_executor")
class MockMathExecutor(ExecutorABC):
"""Given a mathematical expression that conforms to Python syntax, perform the mathematical calculation."""
def __init__(self, llm: LLMClient):
self.llm = llm
self.prompt = """
根据问题生成可执行Python代码(需要import所有的依赖包),最后一行用`print`输出结果。代码需简洁无注释,仅返回代码,不要其他内容。
**示例说明:**
用户问题计算1到100的和。
模型返回:
```python
s = sum(range(1, 101))
print(s)
```
用户问题:
"""
@property
def category(self):
return "Math"
async def gen_py_code(self, query: str):
prompt = f"{self.prompt}\n{query}"
out = await self.llm.acall(prompt)
return out.lstrip("```python").rstrip("```")
def run_py_code(self, code):
import io
from contextlib import redirect_stdout
f = io.StringIO()
with redirect_stdout(f):
exec(code)
output = f.getvalue().strip()
return output
async def ainvoke(self, query: str, task: Task, context: Context, **kwargs):
"""Asynchronous wrapper for synchronous invocation (runs in default threadpool).
Args:
query: Original mathematical query
task: Task containing the mathematical expression
context: Execution context
**kwargs: Additional execution parameters
Returns:
Result from synchronous invocation
"""
try:
math_expr = task.arguments["query"]
result = eval(math_expr.replace("%", "/100"))
task.result = result
return result
except:
py_code = await self.gen_py_code(task.arguments["query"])
print(f"py_code = {py_code}")
result = self.run_py_code(py_code)
task.result = result
def schema(self):
return {
"name": "Math",
"description": "Perform mathematical calculations based on user input and return the result. The user input can be a valid mathematical expression or a problem described in natural language.",
"parameters": {
"query": {
"type": "string",
"description": "The user inputs a string, which will be executed directly if it is a valid Python expression; otherwise, it will be translated into Python code before execution.",
"optional": False,
}
},
}
@ExecutorABC.register("mock_code_executor")
class MockCodeExecutor(ExecutorABC):
"""Given a mathematical expression that conforms to Python syntax, perform the mathematical calculation."""
def __init__(self, llm: LLMClient):
self.llm = llm
self.prompt = """
根据问题生成可执行Python代码(需要import所有的依赖包),最后一行用`print`输出结果。代码需简洁无注释,仅返回代码,不要其他内容。
**示例说明:**
用户问题计算1到100的和。
模型返回:
```python
s = sum(range(1, 101))
print(s)
```
用户问题:
"""
@property
def category(self):
return "Code"
async def gen_py_code(self, query: str):
prompt = f"{self.prompt}\n{query}"
out = await self.llm.acall(prompt)
return out.lstrip("```python").rstrip("```")
def run_py_code(self, code):
import io
from contextlib import redirect_stdout
f = io.StringIO()
with redirect_stdout(f):
exec(code)
output = f.getvalue().strip()
return output
async def ainvoke(self, query: str, task: Task, context: Context, **kwargs):
"""Asynchronous wrapper for synchronous invocation (runs in default threadpool).
Args:
query: Original mathematical query
task: Task containing the mathematical expression
context: Execution context
**kwargs: Additional execution parameters
Returns:
Result from synchronous invocation
"""
try:
math_expr = task.arguments["query"]
result = eval(math_expr.replace("%", "/100"))
task.result = result
return result
except:
py_code = await self.gen_py_code(task.arguments["query"])
print(f"py_code = {py_code}")
result = self.run_py_code(py_code)
task.result = result
def schema(self):
return {
"name": "Code",
"description": "Perform mathematical calculations based on user input and return the result. The user input can be a valid mathematical expression or a problem described in natural language.",
"parameters": {
"query": {
"type": "string",
"description": "The user inputs a string, which will be executed directly if it is a valid Python expression; otherwise, it will be translated into Python code before execution.",
"optional": False,
}
},
}