KAG/kag/common/vectorize_model/openai_model.py
joseosvaldo16 6494fd20c0
feat(builder): add Azure Open AI Compatibility (#269)
* feat(llm): add Azure OpenAI client and vectorization support

* chore: add .DS_Store to .gitignore

* refactor(llm):add description for api_version and default value

* refactor(vectorize_model): added description for ap_version and default values for some params

* refactor(openai_model): enhance docstring for Azure AD token and deployment parameters
2025-01-14 12:57:43 +08:00

135 lines
5.6 KiB
Python

# Copyright 2023 OpenSPG Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied.
from typing import Union, Iterable
from openai import OpenAI, AzureOpenAI
from kag.interface import VectorizeModelABC, EmbeddingVector
from typing import Callable
@VectorizeModelABC.register("openai")
class OpenAIVectorizeModel(VectorizeModelABC):
"""
A class that extends the VectorizeModelABC base class.
It invokes OpenAI or OpenAI-compatible embedding services to convert texts into embedding vectors.
"""
def __init__(
self,
model: str = "text-embedding-3-small",
api_key: str = "",
base_url: str = "",
vector_dimensions: int = None,
timeout: float = None,
):
"""
Initializes the OpenAIVectorizeModel instance.
Args:
model (str, optional): The model to use for embedding. Defaults to "text-embedding-3-small".
api_key (str, optional): The API key for accessing the OpenAI service. Defaults to "".
base_url (str, optional): The base URL for the OpenAI service. Defaults to "".
vector_dimensions (int, optional): The number of dimensions for the embedding vectors. Defaults to None.
"""
super().__init__(vector_dimensions)
self.model = model
self.timeout = timeout
self.client = OpenAI(api_key=api_key, base_url=base_url)
def vectorize(
self, texts: Union[str, Iterable[str]]
) -> Union[EmbeddingVector, Iterable[EmbeddingVector]]:
"""
Vectorizes a text string into an embedding vector or multiple text strings into multiple embedding vectors.
Args:
texts (Union[str, Iterable[str]]): The text or texts to vectorize.
Returns:
Union[EmbeddingVector, Iterable[EmbeddingVector]]: The embedding vector(s) of the text(s).
"""
results = self.client.embeddings.create(
input=texts, model=self.model, timeout=self.timeout
)
results = [item.embedding for item in results.data]
if isinstance(texts, str):
assert len(results) == 1
return results[0]
else:
assert len(results) == len(texts)
return results
@VectorizeModelABC.register("azure_openai")
class AzureOpenAIVectorizeModel(VectorizeModelABC):
''' A class that extends the VectorizeModelABC base class.
It invokes Azure OpenAI or Azure OpenAI-compatible embedding services to convert texts into embedding vectors.
'''
def __init__(
self,
base_url: str,
api_key: str,
model: str = "text-embedding-ada-002",
api_version: str = "2024-12-01-preview",
vector_dimensions: int = None,
timeout: float = None,
azure_deployment: str = None,
azure_ad_token: str = None,
azure_ad_token_provider: Callable = None,
):
"""
Initializes the AzureOpenAIVectorizeModel instance.
Args:
model (str, optional): The model to use for embedding. Defaults to "text-embedding-3-small".
api_key (str, optional): The API key for accessing the Azure OpenAI service. Defaults to "".
api_version (str): The API version for the Azure OpenAI API (eg. "2024-12-01-preview, 2024-10-01-preview,2024-05-01-preview").
base_url (str, optional): The base URL for the Azure OpenAI service. Defaults to "".
vector_dimensions (int, optional): The number of dimensions for the embedding vectors. Defaults to None.
azure_ad_token: Your Azure Active Directory token, https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id
azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked on every request.
azure_deployment: A model deployment, if given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints. Not supported with Assistants APIs.
"""
super().__init__(vector_dimensions)
self.model = model
self.timeout = timeout
self.client = AzureOpenAI(
api_key=api_key,
base_url=base_url,
azure_deployment=azure_deployment,
model=model,
api_version=api_version,
azure_ad_token=azure_ad_token,
azure_ad_token_provider=azure_ad_token_provider,
)
def vectorize(
self, texts: Union[str, Iterable[str]]
) -> Union[EmbeddingVector, Iterable[EmbeddingVector]]:
"""
Vectorizes a text string into an embedding vector or multiple text strings into multiple embedding vectors.
Args:
texts (Union[str, Iterable[str]]): The text or texts to vectorize.
Returns:
Union[EmbeddingVector, Iterable[EmbeddingVector]]: The embedding vector(s) of the text(s).
"""
results = self.client.embeddings.create(
input=texts, model=self.model, timeout=self.timeout
)
results = [item.embedding for item in results.data]
if isinstance(texts, str):
assert len(results) == 1
return results[0]
else:
assert len(results) == len(texts)
return results