KAG/kag/builder/component/vectorizer/batch_vectorizer.py
2025-04-24 13:36:08 +08:00

343 lines
14 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2023 OpenSPG Authors
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied.
import asyncio
from collections import defaultdict
from typing import List, Optional
from tenacity import stop_after_attempt, retry
from kag.builder.model.sub_graph import SubGraph
from kag.common.conf import KAG_PROJECT_CONF
from kag.common.utils import get_vector_field_name
from kag.interface import VectorizerABC, VectorizeModelABC
from knext.schema.client import SchemaClient
from knext.schema.model.base import IndexTypeEnum
from knext.common.base.runnable import Input, Output
class EmbeddingVectorPlaceholder(object):
def __init__(self, number, properties, vector_field, property_key, property_value):
self._number = number
self._properties = properties
self._vector_field = vector_field
self._property_key = property_key
self._property_value = property_value
self._embedding_vector = None
def replace(self):
if self._embedding_vector is not None:
self._properties[self._property_key] = self._property_value
self._properties[self._vector_field] = self._embedding_vector
def __repr__(self):
return repr(self._number)
class EmbeddingVectorManager(object):
def __init__(self, disable_generation=None):
self._placeholders = []
self._disable_generation = frozenset(disable_generation or [])
def get_placeholder(self, label, properties, vector_field):
for property_key, property_value in properties.items():
disable_prop_key = f"{label}.{property_key}"
if disable_prop_key in self._disable_generation:
continue
field_name = get_vector_field_name(property_key)
if field_name != vector_field:
continue
if property_value is None:
return None
if not isinstance(property_value, str):
property_value = str(property_value)
num = len(self._placeholders)
placeholder = EmbeddingVectorPlaceholder(
num, properties, vector_field, property_key, property_value
)
self._placeholders.append(placeholder)
return placeholder
return None
def _get_text_batch(self):
text_batch = dict()
for placeholder in self._placeholders:
property_value = placeholder._property_value
if property_value not in text_batch:
text_batch[property_value] = list()
text_batch[property_value].append(placeholder)
return text_batch
def _generate_vectors(self, vectorizer, text_batch, batch_size=32):
texts = list(text_batch)
if not texts:
return []
if len(texts) % batch_size == 0:
n_batchs = len(texts) // batch_size
else:
n_batchs = len(texts) // batch_size + 1
embeddings = []
for idx in range(n_batchs):
start = idx * batch_size
end = min(start + batch_size, len(texts))
embeddings.extend(vectorizer.vectorize(texts[start:end]))
return embeddings
async def _agenerate_vectors(self, vectorizer, text_batch, batch_size=32):
texts = list(text_batch)
if not texts:
return []
if len(texts) % batch_size == 0:
n_batchs = len(texts) // batch_size
else:
n_batchs = len(texts) // batch_size + 1
tasks = []
for idx in range(n_batchs):
start = idx * batch_size
end = min(start + batch_size, len(texts))
tasks.append(asyncio.create_task(vectorizer.avectorize(texts[start:end])))
results = await asyncio.gather(*tasks)
return [item for sublist in results for item in sublist]
def _fill_vectors(self, vectors, text_batch):
for vector, (_text, placeholders) in zip(vectors, text_batch.items()):
for placeholder in placeholders:
placeholder._embedding_vector = vector
def batch_generate(self, vectorizer, batch_size=32):
text_batch = self._get_text_batch()
vectors = self._generate_vectors(vectorizer, text_batch, batch_size)
self._fill_vectors(vectors, text_batch)
async def abatch_generate(self, vectorizer, batch_size=32):
text_batch = self._get_text_batch()
vectors = await self._agenerate_vectors(vectorizer, text_batch, batch_size)
self._fill_vectors(vectors, text_batch)
def patch(self):
for placeholder in self._placeholders:
placeholder.replace()
class EmbeddingVectorGenerator(object):
def __init__(
self,
vectorizer,
vector_index_meta=None,
disable_generation=None,
extra_labels=("Entity",),
):
self._vectorizer = vectorizer
self._extra_labels = extra_labels
self._vector_index_meta = vector_index_meta or {}
self._disable_generation = disable_generation
def batch_generate(self, node_batch, batch_size=32):
manager = EmbeddingVectorManager(self._disable_generation)
vector_index_meta = self._vector_index_meta
for node_item in node_batch:
label, properties = node_item
labels = [label]
if self._extra_labels:
labels.extend(self._extra_labels)
for label in labels:
if label not in vector_index_meta:
continue
for vector_field in vector_index_meta[label]:
if vector_field in properties:
continue
placeholder = manager.get_placeholder(
label, properties, vector_field
)
if placeholder is not None:
properties[vector_field] = placeholder
manager.batch_generate(self._vectorizer, batch_size)
manager.patch()
async def abatch_generate(self, node_batch, batch_size=32):
manager = EmbeddingVectorManager(self._disable_generation)
vector_index_meta = self._vector_index_meta
for node_item in node_batch:
label, properties = node_item
labels = [label]
if self._extra_labels:
labels.extend(self._extra_labels)
for label in labels:
if label not in vector_index_meta:
continue
for vector_field in vector_index_meta[label]:
if vector_field in properties:
continue
placeholder = manager.get_placeholder(
label, properties, vector_field
)
if placeholder is not None:
properties[vector_field] = placeholder
await manager.abatch_generate(self._vectorizer, batch_size)
manager.patch()
@VectorizerABC.register("batch")
@VectorizerABC.register("batch_vectorizer")
class BatchVectorizer(VectorizerABC):
"""
A class for generating embedding vectors for node attributes in a SubGraph in batches.
This class inherits from VectorizerABC and provides the functionality to generate embedding vectors
for node attributes in a SubGraph in batches. It uses a specified vectorization model and processes
the nodes of a specified batch size.
Attributes:
project_id (int): The ID of the project associated with the SubGraph.
vec_meta (defaultdict): Metadata for vector fields in the SubGraph.
vectorize_model (VectorizeModelABC): The model used for generating embedding vectors.
batch_size (int): The size of the batches in which to process the nodes.
"""
def __init__(
self,
vectorize_model: VectorizeModelABC,
batch_size: int = 32,
disable_generation: Optional[List[str]] = None,
):
"""
Initializes the BatchVectorizer with the specified vectorization model and batch size.
Args:
vectorize_model (VectorizeModelABC): The model used for generating embedding vectors.
batch_size (int): The size of the batches in which to process the nodes. Defaults to 32.
"""
super().__init__()
self.project_id = KAG_PROJECT_CONF.project_id
# self._init_graph_store()
self.vec_meta = self._init_vec_meta()
self.vectorize_model = vectorize_model
self.batch_size = batch_size
self.disable_generation = disable_generation
def _init_vec_meta(self):
"""
Initializes the vector metadata for the SubGraph.
Returns:
defaultdict: Metadata for vector fields in the SubGraph.
"""
vec_meta = defaultdict(list)
schema_client = SchemaClient(
host_addr=KAG_PROJECT_CONF.host_addr, project_id=self.project_id
)
spg_types = schema_client.load()
for type_name, spg_type in spg_types.items():
for prop_name, prop in spg_type.properties.items():
if prop_name == "name" or prop.index_type in [
# if prop.index_type in [
IndexTypeEnum.Vector,
IndexTypeEnum.TextAndVector,
]:
vec_meta[type_name].append(get_vector_field_name(prop_name))
return vec_meta
@retry(stop=stop_after_attempt(3), reraise=True)
def _generate_embedding_vectors(self, input_subgraph: SubGraph) -> SubGraph:
"""
Generates embedding vectors for the nodes in the input SubGraph.
Args:
input_subgraph (SubGraph): The SubGraph for which to generate embedding vectors.
Returns:
SubGraph: The modified SubGraph with generated embedding vectors.
"""
node_list = []
node_batch = []
for node in input_subgraph.nodes:
if not node.id or not node.name:
continue
properties = {"id": node.id, "name": node.name}
properties.update(node.properties)
node_list.append((node, properties))
node_batch.append((node.label, properties.copy()))
generator = EmbeddingVectorGenerator(
self.vectorize_model, self.vec_meta, self.disable_generation
)
generator.batch_generate(node_batch, self.batch_size)
for (node, properties), (_node_label, new_properties) in zip(
node_list, node_batch
):
for key, value in properties.items():
if key in new_properties and new_properties[key] == value:
del new_properties[key]
node.properties.update(new_properties)
return input_subgraph
@retry(stop=stop_after_attempt(3), reraise=True)
async def _agenerate_embedding_vectors(self, input_subgraph: SubGraph) -> SubGraph:
"""
Generates embedding vectors for the nodes in the input SubGraph.
Args:
input_subgraph (SubGraph): The SubGraph for which to generate embedding vectors.
Returns:
SubGraph: The modified SubGraph with generated embedding vectors.
"""
node_list = []
node_batch = []
for node in input_subgraph.nodes:
if not node.id or not node.name:
continue
properties = {"id": node.id, "name": node.name}
properties.update(node.properties)
node_list.append((node, properties))
node_batch.append((node.label, properties.copy()))
generator = EmbeddingVectorGenerator(
self.vectorize_model, self.vec_meta, self.disable_generation
)
await generator.abatch_generate(node_batch, self.batch_size)
for (node, properties), (_node_label, new_properties) in zip(
node_list, node_batch
):
for key, value in properties.items():
if key in new_properties and new_properties[key] == value:
del new_properties[key]
node.properties.update(new_properties)
return input_subgraph
def _invoke(self, input_subgraph: Input, **kwargs) -> List[Output]:
"""
Invokes the generation of embedding vectors for the input SubGraph.
Args:
input_subgraph (Input): The SubGraph for which to generate embedding vectors.
**kwargs: Additional keyword arguments, currently unused but kept for potential future expansion.
Returns:
List[Output]: A list containing the modified SubGraph with generated embedding vectors.
"""
modified_input = self._generate_embedding_vectors(input_subgraph)
return [modified_input]
async def _ainvoke(self, input_subgraph: Input, **kwargs) -> List[Output]:
"""
Invokes the generation of embedding vectors for the input SubGraph.
Args:
input_subgraph (Input): The SubGraph for which to generate embedding vectors.
**kwargs: Additional keyword arguments, currently unused but kept for potential future expansion.
Returns:
List[Output]: A list containing the modified SubGraph with generated embedding vectors.
"""
modified_input = await self._agenerate_embedding_vectors(input_subgraph)
return [modified_input]