mirror of
https://github.com/OpenSPG/KAG.git
synced 2025-06-27 03:20:08 +00:00

* 修复bug:#278,#495,ollama未自测 * 解决代码规范问题 --------- Co-authored-by: e <ling.liu@chinacreator.com>
220 lines
7.5 KiB
Python
220 lines
7.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright 2023 OpenSPG Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
|
|
# in compliance with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
# or implied.
|
|
|
|
import logging
|
|
from ollama import Client, AsyncClient
|
|
|
|
from kag.interface import LLMClient
|
|
|
|
|
|
# logging.basicConfig(level=logging.DEBUG)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@LLMClient.register("Ollama")
|
|
@LLMClient.register("ollama")
|
|
class OllamaClient(LLMClient):
|
|
"""
|
|
A client class for interacting with the Ollama API.
|
|
|
|
This class provides methods to make synchronous requests to the Ollama API, handle model calls, and parse responses.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
base_url: str = None,
|
|
timeout: float = None,
|
|
max_rate: float = 1000,
|
|
time_period: float = 1,
|
|
stream: bool = False,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Initializes the OllamaClient instance.
|
|
|
|
Args:
|
|
model (str): The model to use for requests.
|
|
base_url (str): The base URL for the Ollama API.
|
|
timeout (float): The timeout duration for the service request. Defaults to None, means no timeout.
|
|
"""
|
|
name = kwargs.pop("name", None)
|
|
if not name:
|
|
name = f"{base_url}{model}"
|
|
|
|
super().__init__(name, max_rate, time_period, **kwargs)
|
|
self.model = model
|
|
self.base_url = base_url
|
|
self.timeout = timeout
|
|
self.stream = stream
|
|
self.param = {}
|
|
self.client = Client(host=self.base_url, timeout=self.timeout)
|
|
self.aclient = AsyncClient(host=self.base_url, timeout=self.timeout)
|
|
self.check()
|
|
logger.debug(
|
|
f"Initialize OllamaClient with rate limit {max_rate} every {time_period}s"
|
|
)
|
|
|
|
def __call__(self, prompt: str = "", image_url: str = None, **kwargs):
|
|
"""
|
|
Executes a model request when the object is called and returns the result.
|
|
|
|
Parameters:
|
|
prompt (str): The prompt provided to the model.
|
|
|
|
Returns:
|
|
str: The response content generated by the model.
|
|
"""
|
|
# Call the model with the given prompt and return the response
|
|
reporter = kwargs.get("reporter", None)
|
|
segment_name = kwargs.get("segment_name", None)
|
|
tag_name = kwargs.get("tag_name", None)
|
|
|
|
tools = kwargs.get("tools", None)
|
|
messages = kwargs.get("messages", None)
|
|
if messages is None:
|
|
if image_url:
|
|
messages = [
|
|
{"role": "system", "content": "you are a helpful assistant"},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": prompt},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
],
|
|
},
|
|
]
|
|
else:
|
|
messages = [
|
|
{"role": "system", "content": "you are a helpful assistant"},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
response = self.client.chat(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=self.stream,
|
|
tools=tools,
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
if not self.stream:
|
|
# reasoning_content = getattr(
|
|
# response.choices[0].message, "reasoning_content", None
|
|
# )
|
|
# content = response.choices[0].message.content
|
|
# if reasoning_content:
|
|
# rsp = f"{reasoning_content}\n{content}"
|
|
# else:
|
|
# rsp = content
|
|
rsp = response.message.content
|
|
tool_calls = response.message.tool_calls
|
|
else:
|
|
rsp = ""
|
|
tool_calls = None # TODO: Handle tool calls in stream mode
|
|
|
|
for chunk in response:
|
|
if chunk.message.content is not None:
|
|
rsp += chunk.message.content
|
|
if reporter:
|
|
reporter.add_report_line(
|
|
segment_name,
|
|
tag_name,
|
|
rsp,
|
|
status="RUNNING",
|
|
)
|
|
if reporter:
|
|
reporter.add_report_line(
|
|
segment_name,
|
|
tag_name,
|
|
rsp,
|
|
status="FINISH",
|
|
)
|
|
if tools and tool_calls:
|
|
return response.message
|
|
return rsp
|
|
|
|
async def acall(self, prompt: str = "", image_url: str = None, **kwargs):
|
|
"""
|
|
Executes a model request when the object is called and returns the result.
|
|
|
|
Parameters:
|
|
prompt (str): The prompt provided to the model.
|
|
|
|
Returns:
|
|
str: The response content generated by the model.
|
|
"""
|
|
# Call the model with the given prompt and return the response
|
|
reporter = kwargs.get("reporter", None)
|
|
segment_name = kwargs.get("segment_name", None)
|
|
tag_name = kwargs.get("tag_name", None)
|
|
|
|
tools = kwargs.get("tools", None)
|
|
messages = kwargs.get("messages", None)
|
|
if messages is None:
|
|
if image_url:
|
|
messages = [
|
|
{"role": "system", "content": "you are a helpful assistant"},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": prompt},
|
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|
],
|
|
},
|
|
]
|
|
else:
|
|
messages = [
|
|
{"role": "system", "content": "you are a helpful assistant"},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
response = await self.aclient.chat(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=self.stream,
|
|
tools=tools,
|
|
max_tokens=self.max_tokens,
|
|
)
|
|
if not self.stream:
|
|
# reasoning_content = getattr(
|
|
# response.choices[0].message, "reasoning_content", None
|
|
# )
|
|
# content = response.choices[0].message.content
|
|
# if reasoning_content:
|
|
# rsp = f"{reasoning_content}\n{content}"
|
|
# else:
|
|
# rsp = content
|
|
rsp = response.message.content
|
|
tool_calls = response.message.tool_calls
|
|
else:
|
|
rsp = ""
|
|
tool_calls = None # TODO: Handle tool calls in stream mode
|
|
|
|
async for chunk in response:
|
|
if chunk.message.content is not None:
|
|
rsp += chunk.message.content
|
|
if reporter:
|
|
reporter.add_report_line(
|
|
segment_name,
|
|
tag_name,
|
|
rsp,
|
|
status="RUNNING",
|
|
)
|
|
if reporter:
|
|
reporter.add_report_line(
|
|
segment_name,
|
|
tag_name,
|
|
rsp,
|
|
status="FINISH",
|
|
)
|
|
if tools and tool_calls:
|
|
return response.message
|
|
return rsp
|