KAG/kag/solver/server/model/task_req.py
royzhao e1012d39e4
feat(solver): support kag thinker (#640)
* feat(kag): update to v0.7 (#456)

* add think cost

* update csv scanner

* add final rerank

* add reasoner

* add iterative planner

* fix dpr search

* fix dpr search

* add reference data

* move odps import

* update requirement.txt

* update 2wiki

* add missing file

* fix markdown reader

* add iterative planning

* update version

* update runner

* update 2wiki example

* update bridge

* merge solver and solver_new

* add cur day

* writer delete

* update multi process

* add missing files

* fix report

* add chunk retrieved executor

* update try in stream runner result

* add path

* add math executor

* update hotpotqa example

* remove log

* fix python coder solver

* update hotpotqa example

* fix python coder solver

* update config

* fix bad

* add log

* remove unused code

* commit with task thought

* move kag model to common

* add default chat llm

* fix

* use static planner

* support chunk graph node

* add args

* support naive rag

* llm client support tool calls

* add default async

* add openai

* fix result

* fix markdown reader

* fix thinker

* update asyncio interface

* feat(solver): add mcp support (#444)

* 上传mcp client相关代码

* 1、完成一套mcp client的调用,从pipeline到planner、executor
2、允许json中传入多个mcp_server,通过大模型进行调用并选择
3、调通baidu_map_mcp的使用

* 1、schema

* bugfix:删减冗余代码

---------

Co-authored-by: wanxingyu.wxy <wanxingyu.wxy@antgroup.com>

* fix affairqa after solver refactor

* fix affairqa after solver refactor

* fix readme

* add params

* update version

* update mcp executor

* update mcp executor

* solver add mcp executor

* add missing file

* add mpc executor

* add executor

* x

* update

* fix requirement

* fix main llm config

* fix solver

* bugfix:修复invoke函数调用逻辑

* chg eva

* update example

* add kag layer

* add step task

* support dot refresh

* support dot refresh

* support dot refresh

* support dot refresh

* add retrieved num

* add retrieved num

* add pipelineconf

* update ppr

* update musique prompts

* update

* add to_dict for BuilderComponentData

* async build

* add deduce prompt

* add deduce prompt

* add deduce prompt

* fix reader

* add deduce prompt

* add page thinker report

* modify prmpt

* add step status

* add self cognition

* add self cognition

* add memory graph storage

* add now time

* update memory config

* add now time

* chg graph loader

* 添加prqa数据集和代码

* bugfix:prqa调用逻辑修复

* optimize:优化代码逻辑,生成答案规范化

* add retry py code

* update memory graph

* update memory graph

* fix

* fix ner

* add with_out_refer generator prompt

* fix

* close ckpt

* fix query

* fix query

* update version

* add llm checker

* add llm checker

* 1、上传evalutor.py以及修改gold_answer.json格式
2、优化代码逻辑
3、修改README.md文件

* update exp

* update exp

* rerank support

* add static rewrite query

* recall more chunks

* fix graph load

* add static rewrite query

* fix bugs

* add finish check

* add finish check

* add finish check

* add finish check

* 1、上传evalutor.py的结果
2、优化代码逻辑,优化readme文件

* add lf retry

* add memory graph api

* fix reader api

* add ner

* add metrics

* fix bug

* remove ner

* add reraise fo retry

* add edge prop to memory graph

* add memory graph

* 1、评测数据集结果修正
2、优化evaluator.py代码
3、删除结果不存在而gold_answer中有答案的问题

* 删除评测结果文件

* fix knext host addr

* async eva

* add lf prompt

* add lf prompt

* add config

* add retry

* add unknown check

* add rc result

* add rc result

* add rc result

* add rc result

* 依据kag pipeline格式修改代码逻辑并通过测试

* bugfix:删除冗余代码

* fix report prompt

* bugfix:触发重试机制

* bugfix:中文符号错误

* fix rethinker prompt

* update version to 0.6.2b78

* update version

* 1、修改evaluator.py,通过大模型计算准确率,符合最新调用逻辑
2、修改prompt,让没有回答的结果重复测试

* update affairqa for evaluate

* update affairqa for evaluate

* bugfix:修正数据集

* bugfix:修正数据集

* bugfix:修正数据集

* fix name conflict

* bugfix:删除错误问题

* bugfix:文件名命名错误导致evaluator失败

* update for affairqa eval

* bugfix:修改代码保持evaluate逻辑一致

* x

* update for affairqa readme

* remove temp eval scripts

* bugfix for math deduce

* merge 0.6.2_dev

* merge 0.6.2_dev

* fix

* update client addr

* updated version

* update for affairqa eval

* evaUtils 支持中文

* fix affairqa eval:

* remove unused example

* update kag config

* fix default value

* update readme

* fix init

* 注释信息修改,并添加部分class说明

* update example config

* Tc 0.7.0 (#459)

* 提交affairQA 代码

* fix affairqa eval

---------

Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com>

* fix all examples

* reformat

---------

Co-authored-by: peilong <peilong.zpl@antgroup.com>
Co-authored-by: 锦呈 <zhangxinhong.zxh@antgroup.com>
Co-authored-by: wanxingyu.wxy <wanxingyu.wxy@antgroup.com>
Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com>

* update chunk metadata

* update chunk metadata

* add debug reporter

* update table text

* add server

* fix math executor

* update api-key for openai vec

* update

* fix naive rag bug

* format code

* fix

---------

Co-authored-by: zhuzhongshu123 <152354526+zhuzhongshu123@users.noreply.github.com>
Co-authored-by: 锦呈 <zhangxinhong.zxh@antgroup.com>
Co-authored-by: wanxingyu.wxy <wanxingyu.wxy@antgroup.com>
Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com>
2025-07-08 17:44:32 +08:00

123 lines
3.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
from typing import Optional
from pydantic import BaseModel, model_validator, field_serializer
class ReqBody(BaseModel):
"""Request body model containing query parameters"""
query: str = ""
report: bool = True
host_addr: str = ""
class TaskReq(BaseModel):
"""Task request model with validation logic"""
app_id: int = ""
project_id: int = 0
req_id: str = ""
cmd: str = ""
mode: str = ""
req: str = None
config: str = "{}"
@model_validator(mode="after")
def parse_req_to_req_body(self):
"""Parse req string to ReqBody object and process config field"""
try:
import json
if isinstance(self.req, str):
req_body_dict = json.loads(self.req)
self.req = ReqBody(**req_body_dict)
if isinstance(self.config, str) and self.config:
config_dict = json.loads(self.config)
self.config = config_dict
except Exception as e:
raise ValueError(f"Failed to parse 'req' field to ReqBody: {e}")
return self
@field_serializer("req")
def serialize_req(self, value: object) -> object:
"""Serialize ReqBody back to JSON string"""
if isinstance(value, ReqBody):
return value.model_dump_json()
return value # Return as-is if already a string
# Request model with TaskReq parsing capability
class Request(BaseModel):
"""Container model for task request data"""
in_string: str
task_req: Optional[TaskReq] = None
@model_validator(mode="after")
def parse_in_string_to_task_req(self):
"""Convert in_string JSON string to TaskReq object"""
try:
import json
task_req_dict = json.loads(self.in_string)
self.task_req = TaskReq(**task_req_dict)
except Exception as e:
raise ValueError(f"Invalid TaskReq JSON string: {e}")
return self
class FeatureRequest(BaseModel):
"""Top-level request wrapper with features container"""
features: Request
if __name__ == "__main__":
def feature_request_parsing():
"""Demonstrate nested model parsing workflow"""
# Build innermost ReqBody JSON string
req_body = ReqBody(
query="阿里巴巴财报中2024年-截至9月30日止六个月的收入是多少其中云智能集团收入是多少占比是多少",
report=True,
host_addr="https://spg.alipay.com",
)
req_body_json = json.dumps(req_body.model_dump())
# Build TaskReq dictionary and serialize to string
task_req = TaskReq(
req_id="9400110",
cmd="submit",
mode="async",
req=req_body_json,
app_id="app_id",
project_id=4200050,
config={"timeout": 10},
)
task_req_json = json.dumps(task_req.model_dump())
# Construct final FeatureRequest JSON string
input_data = {"features": {"in_string": task_req_json}}
# Deserialize to FeatureRequest model
feature_request = FeatureRequest(**input_data)
# Validate in_string parsed to TaskReq
assert isinstance(feature_request.features.task_req, TaskReq)
assert feature_request.features.task_req.req_id == "abc123"
assert feature_request.features.task_req.cmd == "run"
assert feature_request.features.task_req.mode == "sync"
assert feature_request.features.task_req.config == {"timeout": 10}
# Validate TaskReq.req parsed to ReqBody
req_body_parsed = feature_request.features.task_req.req
assert isinstance(req_body_parsed, ReqBody)
assert req_body_parsed.query == "What is AI?"
assert req_body_parsed.report is True
assert req_body_parsed.host_addr == "localhost"
print("✅ All assertions passed!")
feature_request_parsing()