mirror of
https://github.com/OpenSPG/KAG.git
synced 2025-07-25 18:06:13 +00:00

* add path find * fix find path * spg guided relation extraction * fix dict parse with same key * rename graphalgoclient to graphclient * rename graphalgoclient to graphclient * file reader supports http url * add checkpointer class * parser supports checkpoint * add build * remove incorrect logs * remove logs * update examples * update chain checkpointer * vectorizer batch size set to 32 * add a zodb backended checkpointer * add a zodb backended checkpointer * fix zodb based checkpointer * add thread for zodb IO * fix(common): resolve mutlithread conflict in zodb IO * fix(common): load existing zodb checkpoints * update examples * update examples * fix zodb writer * add docstring * fix jieba version mismatch * commit kag_config-tc.yaml 1、rename type to register_name 2、put a uniqe & specific name to register_name 3、rename reader to scanner 4、rename parser to reader 5、rename num_parallel to num_parallel_file, rename chain_level_num_paralle to num_parallel_chain_of_file 6、rename kag_extractor to schema_free_extractor, schema_base_extractor to schema_constraint_extractor 7、pre-define llm & vectorize_model and refer them in the yaml file Issues to be resolved: 1、examples of event extract & spg extract 2、statistic of indexer, such as nums of nodes & edges extracted, ratio of llm invoke. 3、Exceptions such as Debt, account does not exist should be thrown in llm invoke. 4、conf of solver need to be re-examined. * commit kag_config-tc.yaml 1、rename type to register_name 2、put a uniqe & specific name to register_name 3、rename reader to scanner 4、rename parser to reader 5、rename num_parallel to num_parallel_file, rename chain_level_num_paralle to num_parallel_chain_of_file 6、rename kag_extractor to schema_free_extractor, schema_base_extractor to schema_constraint_extractor 7、pre-define llm & vectorize_model and refer them in the yaml file Issues to be resolved: 1、examples of event extract & spg extract 2、statistic of indexer, such as nums of nodes & edges extracted, ratio of llm invoke. 3、Exceptions such as Debt, account does not exist should be thrown in llm invoke. 4、conf of solver need to be re-examined. * 1、fix bug in base_table_splitter * 1、fix bug in base_table_splitter * 1、fix bug in default_chain * 增加solver * add kag * update outline splitter * add main test * add op * code refactor * add tools * fix outline splitter * fix outline prompt * graph api pass * commit with page rank * add search api and graph api * add markdown report * fix vectorizer num batch compute * add retry for vectorize model call * update markdown reader * update markdown reader * update pdf reader * raise extractor failure * add default expr * add log * merge jc reader features * rm import * add build * fix zodb based checkpointer * add thread for zodb IO * fix(common): resolve mutlithread conflict in zodb IO * fix(common): load existing zodb checkpoints * update examples * update examples * fix zodb writer * add docstring * fix jieba version mismatch * commit kag_config-tc.yaml 1、rename type to register_name 2、put a uniqe & specific name to register_name 3、rename reader to scanner 4、rename parser to reader 5、rename num_parallel to num_parallel_file, rename chain_level_num_paralle to num_parallel_chain_of_file 6、rename kag_extractor to schema_free_extractor, schema_base_extractor to schema_constraint_extractor 7、pre-define llm & vectorize_model and refer them in the yaml file Issues to be resolved: 1、examples of event extract & spg extract 2、statistic of indexer, such as nums of nodes & edges extracted, ratio of llm invoke. 3、Exceptions such as Debt, account does not exist should be thrown in llm invoke. 4、conf of solver need to be re-examined. * commit kag_config-tc.yaml 1、rename type to register_name 2、put a uniqe & specific name to register_name 3、rename reader to scanner 4、rename parser to reader 5、rename num_parallel to num_parallel_file, rename chain_level_num_paralle to num_parallel_chain_of_file 6、rename kag_extractor to schema_free_extractor, schema_base_extractor to schema_constraint_extractor 7、pre-define llm & vectorize_model and refer them in the yaml file Issues to be resolved: 1、examples of event extract & spg extract 2、statistic of indexer, such as nums of nodes & edges extracted, ratio of llm invoke. 3、Exceptions such as Debt, account does not exist should be thrown in llm invoke. 4、conf of solver need to be re-examined. * 1、fix bug in base_table_splitter * 1、fix bug in base_table_splitter * 1、fix bug in default_chain * update outline splitter * add main test * add markdown report * code refactor * fix outline splitter * fix outline prompt * update markdown reader * fix vectorizer num batch compute * add retry for vectorize model call * update markdown reader * raise extractor failure * rm parser * run pipeline * add config option of whether to perform llm config check, default to false * fix * recover pdf reader * several components can be null for default chain * 支持完整qa运行 * add if * remove unused code * 使用chunk兜底 * excluded source relation to choose * add generate * default recall 10 * add local memory * 排除相似边 * 增加保护 * 修复并发问题 * add debug logger * 支持topk参数化 * 支持chunk截断和调整spo select 的prompt * 增加查询请求保护 * 增加force_chunk配置 * fix entity linker algorithm * 增加sub query改写 * fix md reader dup in test * fix * merge knext to kag parallel * fix package * 修复指标下跌问题 * scanner update * scanner update * add doc and update example scripts * fix * add bridge to spg server * add format * fix bridge * update conf for baike * disable ckpt for spg server runner * llm invoke error default raise exceptions * chore(version): bump version to X.Y.Z * update default response generation prompt * add method getSummarizationMetrics * fix(common): fix project conf empty error * fix typo * 增加上报信息 * 修改main solver * postprocessor support spg server * 修改solver支持名 * fix language * 修改chunker接口,增加openapi * rename vectorizer to vectorize_model in spg server config * generate_random_string start with gen * add knext llm vector checker * add knext llm vector checker * add knext llm vector checker * solver移除默认值 * udpate yaml and register_name for baike * udpate yaml and register_name for baike * remove config key check * 修复llmmodule * fix knext project * udpate yaml and register_name for examples * udpate yaml and register_name for examples * Revert "udpate yaml and register_name for examples" This reverts commit b3fa5ca9ba749e501133ac67bd8746027ab839d9. * update register name * fix * fix * support multiple resigter names * update component * update reader register names (#183) * fix markdown reader * fix llm client for retry * feat(common): add processed chunk id checkpoint (#185) * update reader register names * add processed chunk id checkpoint * feat(example): add example config (#186) * update reader register names * add processed chunk id checkpoint * add example config file * add max_workers parameter for getSummarizationMetrics to make it faster * add csqa data generation script generate_data.py * commit generated csqa builder and solver data * add csqa basic project files * adjust split_length and num_threads_per_chain to match lightrag settings * ignore ckpt dirs * add csqa evaluation script eval.py * save evaluation scripts summarization_metrics.py and factual_correctness.py * save LightRAG output csqa_lightrag_answers.json * ignore KAG output csqa_kag_answers.json * add README.md for CSQA * fix(solver): fix solver pipeline conf (#191) * update reader register names * add processed chunk id checkpoint * add example config file * update solver pipeline config * fix project create * update links and file paths * reformat csqa kag_config.yaml * reformat csqa python files * reformat getSummarizationMetrics and compare_summarization_answers * fix(solver): fix solver config (#192) * update reader register names * add processed chunk id checkpoint * add example config file * update solver pipeline config * fix project create * fix main solver conf * add except * fix typo in csqa README.md * feat(conf): support reinitialize config for call from java side (#199) * update reader register names * add processed chunk id checkpoint * add example config file * update solver pipeline config * fix project create * fix main solver conf * support reinitialize config for java call * revert default response generation prompt * update project list * add README.md for the hotpotqa, 2wiki and musique examples * 增加spo检索 * turn off kag config dump by default * turn off knext schema dump by default * add .gitignore and fix kag_config.yaml * add README.md for the medicine example * add README.md for the supplychain example * bugfix for risk mining * use exact out * refactor(solver): format solver code (#205) * update reader register names * add processed chunk id checkpoint * add example config file * update solver pipeline config * fix project create * fix main solver conf * support reinitialize config for java call * black format --------- Co-authored-by: peilong <peilong.zpl@antgroup.com> Co-authored-by: 锦呈 <zhangxinhong.zxh@antgroup.com> Co-authored-by: zhengke.gzk <zhengke.gzk@antgroup.com> Co-authored-by: huaidong.xhd <huaidong.xhd@antgroup.com>
174 lines
5.8 KiB
Python
174 lines
5.8 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright 2023 OpenSPG Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
|
|
# in compliance with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
# or implied.
|
|
|
|
import json
|
|
from typing import Union, Dict, List, Any
|
|
import logging
|
|
import traceback
|
|
from tenacity import retry, stop_after_attempt
|
|
from kag.interface import PromptABC
|
|
from kag.common.registry import Registrable
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LLMClient(Registrable):
|
|
"""
|
|
A class that provides methods for performing inference using large language model.
|
|
|
|
This class includes methods to call the model with a prompt, parse the response, and handle batch processing of prompts.
|
|
"""
|
|
|
|
@retry(stop=stop_after_attempt(3))
|
|
def __call__(self, prompt: Union[str, dict, list]) -> str:
|
|
"""
|
|
Perform inference on the given prompt and return the result.
|
|
|
|
Args:
|
|
prompt (Union[str, dict, list]): Input prompt for inference.
|
|
|
|
Returns:
|
|
str: Inference result.
|
|
|
|
Raises:
|
|
NotImplementedError: If the subclass has not implemented this method.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@retry(stop=stop_after_attempt(3))
|
|
def call_with_json_parse(self, prompt: Union[str, dict, list]):
|
|
"""
|
|
Perform inference on the given prompt and attempt to parse the result as JSON.
|
|
|
|
Args:
|
|
prompt (Union[str, dict, list]): Input prompt for inference.
|
|
|
|
Returns:
|
|
Any: Parsed result.
|
|
|
|
Raises:
|
|
NotImplementedError: If the subclass has not implemented this method.
|
|
"""
|
|
res = self(prompt)
|
|
_end = res.rfind("```")
|
|
_start = res.find("```json")
|
|
if _end != -1 and _start != -1:
|
|
json_str = res[_start + len("```json") : _end].strip()
|
|
else:
|
|
json_str = res
|
|
try:
|
|
json_result = json.loads(json_str)
|
|
except:
|
|
return res
|
|
return json_result
|
|
|
|
def invoke(
|
|
self,
|
|
variables: Dict[str, Any],
|
|
prompt_op: PromptABC,
|
|
with_json_parse: bool = True,
|
|
with_except: bool = True,
|
|
):
|
|
"""
|
|
Call the model and process the result.
|
|
|
|
Args:
|
|
variables (Dict[str, Any]): Variables used to build the prompt.
|
|
prompt_op (PromptABC): Prompt operation object for building and parsing prompts.
|
|
with_json_parse (bool, optional): Whether to attempt parsing the response as JSON. Defaults to True.
|
|
with_except (bool, optional): Whether to raise an exception if an error occurs. Defaults to False.
|
|
|
|
Returns:
|
|
List: Processed result list.
|
|
"""
|
|
result = []
|
|
prompt = prompt_op.build_prompt(variables)
|
|
logger.debug(f"Prompt: {prompt}")
|
|
if not prompt:
|
|
return result
|
|
response = ""
|
|
try:
|
|
response = (
|
|
self.call_with_json_parse(prompt=prompt)
|
|
if with_json_parse
|
|
else self(prompt)
|
|
)
|
|
logger.debug(f"Response: {response}")
|
|
result = prompt_op.parse_response(response, model=self.model, **variables)
|
|
logger.debug(f"Result: {result}")
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
logger.error(f"Error {e} during invocation: {traceback.format_exc()}")
|
|
if with_except:
|
|
raise RuntimeError(
|
|
f"LLM invoke exception, info: {e}\nllm input: {input}\nllm output: {response}"
|
|
)
|
|
return result
|
|
|
|
def batch(
|
|
self,
|
|
variables: Dict[str, Any],
|
|
prompt_op: PromptABC,
|
|
with_json_parse: bool = True,
|
|
) -> List:
|
|
"""
|
|
Batch process prompts.
|
|
|
|
Args:
|
|
variables (Dict[str, Any]): Variables used to build the prompts.
|
|
prompt_op (PromptABC): Prompt operation object for building and parsing prompts.
|
|
with_json_parse (bool, optional): Whether to attempt parsing the response as JSON. Defaults to True.
|
|
|
|
Returns:
|
|
List: List of all processed results.
|
|
"""
|
|
results = []
|
|
prompts = prompt_op.build_prompt(variables)
|
|
# If there is only one prompt, call the `invoke` method directly
|
|
if isinstance(prompts, str):
|
|
return self.invoke(variables, prompt_op, with_json_parse=with_json_parse)
|
|
|
|
for idx, prompt in enumerate(prompts, start=0):
|
|
logger.debug(f"Prompt_{idx}: {prompt}")
|
|
try:
|
|
response = (
|
|
self.call_with_json_parse(prompt=prompt)
|
|
if with_json_parse
|
|
else self(prompt)
|
|
)
|
|
logger.debug(f"Response_{idx}: {response}")
|
|
result = prompt_op.parse_response(
|
|
response, idx=idx, model=self.model, **variables
|
|
)
|
|
logger.debug(f"Result_{idx}: {result}")
|
|
results.extend(result)
|
|
except Exception as e:
|
|
logger.error(f"Error processing prompt {idx}: {e}")
|
|
logger.debug(traceback.format_exc())
|
|
continue
|
|
return results
|
|
|
|
def check(self):
|
|
from kag.common.conf import KAG_PROJECT_CONF
|
|
|
|
if (
|
|
hasattr(KAG_PROJECT_CONF, "llm_config_check")
|
|
and KAG_PROJECT_CONF.llm_config_check
|
|
):
|
|
try:
|
|
self.__call__("Are you OK?")
|
|
except Exception as e:
|
|
logger.error("LLM config check failed!")
|
|
raise e
|