LLMs-from-scratch/ch05/07_gpt_to_llama/converting-gpt-to-llama2.ipynb

1668 lines
55 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "0_xya1nyDHfY",
"metadata": {
"id": "0_xya1nyDHfY"
},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"id": "l62zIRRSBy_R",
"metadata": {
"id": "l62zIRRSBy_R"
},
"source": [
"# Converting a From-Scratch GPT Architecture to Llama 2"
]
},
{
"cell_type": "markdown",
"id": "aFmxTQbwCUMl",
"metadata": {
"id": "aFmxTQbwCUMl"
},
"source": [
2024-09-24 18:49:17 -05:00
"- In this notebook, we convert the original GPT architecture into a Llama 2 model step by step (note the GPT and GPT-2 share the same architecture)\n",
"- Why not Llama 1 or Llama 3?\n",
2024-09-24 18:49:17 -05:00
" - The Llama 1 architecture is similar to Llama 2, except that Llama 2 has a larger context window (which is nice); the Llama 1 weights are not readily available and have more usage restrictions, so it makes more sense to focus on Llama 2\n",
" - Regarding Llama 3, I will share a separate notebook to convert Llama 2 to Llama 3 (there are only a few small additional changes)\n",
"- The explanations are purposefully kept minimal in this notebook not to bloat it unnecessarily and focus on the main code\n",
"- For more information, please see the Llama 2 paper: [Llama 2: Open Foundation and Fine-Tuned Chat Models (2023)](https://arxiv.org/abs/2307.09288)"
]
},
{
"cell_type": "markdown",
"id": "ohhMKUWvGm9z",
"metadata": {
"id": "ohhMKUWvGm9z"
},
"source": [
2024-09-23 08:17:10 -05:00
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt2-to-llama2-llama3.webp?1\">"
]
},
{
"cell_type": "markdown",
"id": "JBpQwU89ETA1",
"metadata": {
"id": "JBpQwU89ETA1"
},
"source": [
"- Packages that are being used in this notebook:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
"outputId": "8118963b-3c72-43af-874b-439ffebdc94c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"huggingface_hub version: 0.33.0\n",
"sentencepiece version: 0.2.0\n",
"torch version: 2.6.0\n"
]
}
],
"source": [
"from importlib.metadata import version\n",
"\n",
"pkgs = [\n",
" \"huggingface_hub\", # to download pretrained weights\n",
" \"sentencepiece\", # to implement the tokenizer\n",
" \"torch\", # to implement the model\n",
"]\n",
"for p in pkgs:\n",
" print(f\"{p} version: {version(p)}\")"
]
},
{
"cell_type": "markdown",
"id": "UJJneXpTEg4W",
"metadata": {
"id": "UJJneXpTEg4W"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"# 1. Convert the GPT model implementation step by step"
]
},
{
"cell_type": "markdown",
"id": "v1zpfX2GHBKa",
"metadata": {
"id": "v1zpfX2GHBKa"
},
"source": [
"- In this section, we go through the GPT model code from [chapter 4](../../ch04/01_main-chapter-code/ch04.ipynb) and modify it step by step to implement the Llama 2 architecture\n",
"- Later, we load the original Llama 2 weights shared by Meta AI"
]
},
{
"cell_type": "markdown",
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f",
"metadata": {
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.1 Replace LayerNorm with RMSNorm layer"
]
},
{
"cell_type": "markdown",
"id": "f8b27fc8-23a1-4e0e-a1ea-792e0428e5e6",
"metadata": {
"id": "f8b27fc8-23a1-4e0e-a1ea-792e0428e5e6"
},
"source": [
"- First, we replace LayerNorm by Root Mean Square Layer Normalization (RMSNorm)\n",
"- LayerNorm normalizes inputs using mean and variance, while RMSNorm uses only the root mean square, which improves computational efficiency\n",
"- The RMSNorm operation is as follows, where $x$ is the input $\\gamma$ is a trainable parameter (vector), and $\\epsilon$ is a small constant to avoid zero-division errors:\n",
"\n",
2024-09-24 18:49:17 -05:00
"$$y_i = \\frac{x_i}{\\text{RMS}(x)} \\gamma_i, \\quad \\text{where} \\quad \\text{RMS}(x) = \\sqrt{\\epsilon + \\frac{1}{n} \\sum x_i^2}$$\n",
"\n",
"- For more details, please see the paper [Root Mean Square Layer Normalization (2019)](https://arxiv.org/abs/1910.07467)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d7094381-9499-4e9e-93f9-b79470da3771",
"metadata": {
"id": "d7094381-9499-4e9e-93f9-b79470da3771"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"\n",
"#####################################\n",
"# Chapter 4\n",
"#####################################\n",
"\n",
"# class LayerNorm(nn.Module):\n",
"# def __init__(self, emb_dim):\n",
"# super().__init__()\n",
"# self.eps = 1e-5\n",
"# self.scale = nn.Parameter(torch.ones(emb_dim))\n",
"# self.shift = nn.Parameter(torch.zeros(emb_dim))\n",
"\n",
"# def forward(self, x):\n",
"# mean = x.mean(dim=-1, keepdim=True)\n",
"# var = x.var(dim=-1, keepdim=True, unbiased=False)\n",
"# norm_x = (x - mean) / torch.sqrt(var + self.eps)\n",
"# return self.scale * norm_x + self.shift\n",
"\n",
"\n",
"class RMSNorm(nn.Module):\n",
" def __init__(self, emb_dim, eps=1e-5):\n",
" super().__init__()\n",
" self.eps = eps\n",
" self.emb_dim = emb_dim\n",
" self.weight = nn.Parameter(torch.ones(emb_dim)).float()\n",
"\n",
" def forward(self, x):\n",
" means = x.pow(2).mean(dim=-1, keepdim=True)\n",
" x_normed = x * torch.rsqrt(means + self.eps)\n",
" return (x_normed * self.weight).to(dtype=x.dtype)"
]
},
{
"cell_type": "markdown",
"id": "mtWC8DOmIu0F",
"metadata": {
"id": "mtWC8DOmIu0F"
},
"source": [
"- The following code cell checks that this implementation works the same as PyTorch's built-in implementation:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e41ade7a-bf06-48b1-8b7e-0e4037d5753f",
"metadata": {
"id": "e41ade7a-bf06-48b1-8b7e-0e4037d5753f"
},
"outputs": [],
"source": [
"torch.manual_seed(123)\n",
"\n",
"example_batch = torch.randn(2, 3, 4)\n",
"\n",
"rms_norm = RMSNorm(emb_dim=example_batch.shape[-1])\n",
"rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-5)\n",
"\n",
"assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))"
]
},
{
"cell_type": "markdown",
"id": "5eb81f83-c38c-46a4-b763-aa630a32e357",
"metadata": {
"id": "5eb81f83-c38c-46a4-b763-aa630a32e357"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.2 Replace GELU with SiLU activation"
]
},
{
"cell_type": "markdown",
"id": "0b8aa702-f118-4ff6-9135-90725ec8756c",
"metadata": {
"id": "0b8aa702-f118-4ff6-9135-90725ec8756c"
},
"source": [
"- Llama uses the SiLU activation function (instead of GELU), which is also known as the Swish function:\n",
"\n",
"$$\n",
"\\text{silu}(x) = x \\cdot \\sigma(x), \\quad \\text{where} \\quad \\sigma(x) \\text{ is the logistic sigmoid.}\n",
"$$\n",
"\n",
"- For more information, see the SiLU paper: [Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning (2017)](https://arxiv.org/abs/1702.03118)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a74f3757-c634-4a3a-a8f3-6334cde454fe",
"metadata": {
"id": "a74f3757-c634-4a3a-a8f3-6334cde454fe"
},
"outputs": [],
"source": [
"#####################################\n",
"# Chapter 4\n",
"#####################################\n",
"\n",
"# class GELU(nn.Module):\n",
"# def __init__(self):\n",
"# super().__init__()\n",
"\n",
"# def forward(self, x):\n",
"# return 0.5 * x * (1 + torch.tanh(\n",
"# torch.sqrt(torch.tensor(2.0 / torch.pi)) *\n",
"# (x + 0.044715 * torch.pow(x, 3))\n",
"# ))\n",
"\n",
"\n",
"class SiLU(nn.Module):\n",
" def __init__(self):\n",
" super(SiLU, self).__init__()\n",
"\n",
" def forward(self, x):\n",
" return x * torch.sigmoid(x)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "72ecbe2e-b6b7-4319-972b-1a7fefa3368c",
"metadata": {
"id": "72ecbe2e-b6b7-4319-972b-1a7fefa3368c"
},
"outputs": [],
"source": [
"silu = SiLU()\n",
"\n",
"assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))"
]
},
{
"cell_type": "markdown",
"id": "4f9b5167-1da9-46c8-9964-8036b3b1deb9",
"metadata": {
"id": "4f9b5167-1da9-46c8-9964-8036b3b1deb9"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.3 Update the FeedForward module"
]
},
{
"cell_type": "markdown",
"id": "3a381e7a-b807-472e-91c9-3e4e3fc5ad91",
"metadata": {
"id": "3a381e7a-b807-472e-91c9-3e4e3fc5ad91"
},
"source": [
"- In fact, Llama uses a \"Gates Linear Unit\" (GLU) variant of SiLU called SwiGLU, which essentially results in a slightly differently structured `FeedForward` module\n",
"- SwiGLU uses a gating mechanism in the feedforward layer, with the formula:\n",
"\n",
"$$\\text{SwiGLU}(x) = \\text{SiLU}(\\text{Linear}_1(x)) * (\\text{Linear}_2(x))$$\n",
"\n",
"- Here, $\\text{Linear}_1$ and $\\text{Linear}_2$ are two linear layers, and $*$ denotes element-wise multiplication\n",
"- The third linear layer, $\\text{Linear}_3$, is applied after this gated activation\n",
"\n",
"- For more information, see SwiGLU paper: [GLU Variants Improve Transformer (2020)](https://arxiv.org/abs/2002.05202)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d25fbe3d-b7c9-4772-ad67-bc0527e4e20a",
"metadata": {
"id": "d25fbe3d-b7c9-4772-ad67-bc0527e4e20a"
},
"outputs": [],
"source": [
"#####################################\n",
"# Chapter 4\n",
"#####################################\n",
"# class FeedForward(nn.Module):\n",
"# def __init__(self, cfg):\n",
"# super().__init__()\n",
"# self.layers = nn.Sequential(\n",
"# nn.Linear(cfg[\"emb_dim\"], 4 * cfg[\"emb_dim\"]),\n",
"# GELU(),\n",
"# nn.Linear(4 * cfg[\"emb_dim\"], cfg[\"emb_dim\"]),\n",
"# )\n",
"\n",
"# def forward(self, x):\n",
"# return self.layers(x)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "477568cb-03cd-4510-b663-a42ce3ec64a2",
"metadata": {
"id": "477568cb-03cd-4510-b663-a42ce3ec64a2"
},
"outputs": [],
"source": [
"class FeedForward(nn.Module):\n",
" def __init__(self, cfg):\n",
" super().__init__()\n",
" self.fc1 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
" self.fc2 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
" self.fc3 = nn.Linear(cfg[\"hidden_dim\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
" self.silu = SiLU()\n",
"\n",
" def forward(self, x):\n",
" x_fc1 = self.fc1(x)\n",
" x_fc2 = self.fc2(x)\n",
" x = self.silu(x_fc1) * x_fc2\n",
" return self.fc3(x)"
]
},
{
"cell_type": "markdown",
"id": "qcD8LSHNhBRW",
"metadata": {
"id": "qcD8LSHNhBRW"
},
"source": [
"- Note that we also added a `dtype=cfg[\"dtype\"]` setting above, which will allow us to load the model directly in lower precision formats later to reduce memory usage (versus instantiating it in the original 32-bit precision format and then converting it)\n",
"- We also set `bias=False` since Llama doesn't use any bias units"
]
},
{
"cell_type": "markdown",
"id": "f6b7bf4f-99d0-42c1-807c-5074d2cc1949",
"metadata": {
"id": "f6b7bf4f-99d0-42c1-807c-5074d2cc1949"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.4 Implement RoPE"
]
},
{
"cell_type": "markdown",
"id": "d3487a6f-0373-49d8-b2eb-f8ee05d42884",
"metadata": {
"id": "d3487a6f-0373-49d8-b2eb-f8ee05d42884"
},
"source": [
"- In the GPT model, the positional embeddings are implemented as follows:\n",
"\n",
"```python\n",
"self.pos_emb = nn.Embedding(cfg[\"context_length\"], cfg[\"emb_dim\"])\n",
"```\n",
"\n",
"- Unlike traditional absolute positional embeddings, Llama uses rotary position embeddings (RoPE), which enable it to capture both absolute and relative positional information simultaneously\n",
"- The reference paper for RoPE is [RoFormer: Enhanced Transformer with Rotary Position Embedding (2021)](https://arxiv.org/abs/2104.09864)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a34180fb-448f-44e9-a244-0c736051687b",
"metadata": {
"id": "a34180fb-448f-44e9-a244-0c736051687b"
},
"outputs": [],
"source": [
"def precompute_rope_params(head_dim, theta_base=10_000, context_length=4096):\n",
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
"\n",
" # Compute the inverse frequencies\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
"\n",
" # Generate position indices\n",
" positions = torch.arange(context_length)\n",
"\n",
" # Compute the angles\n",
" angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)\n",
"\n",
" # Expand angles to match the head_dim\n",
" angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)\n",
"\n",
" # Precompute sine and cosine\n",
" cos = torch.cos(angles)\n",
" sin = torch.sin(angles)\n",
"\n",
" return cos, sin\n",
"\n",
"def compute_rope(x, cos, sin):\n",
" # x: (batch_size, num_heads, seq_len, head_dim)\n",
" batch_size, num_heads, seq_len, head_dim = x.shape\n",
" assert head_dim % 2 == 0, \"Head dimension must be even\"\n",
"\n",
" # Split x into first half and second half\n",
" x1 = x[..., : head_dim // 2] # First half\n",
" x2 = x[..., head_dim // 2 :] # Second half\n",
"\n",
" # Adjust sin and cos shapes\n",
" cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)\n",
" sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)\n",
"\n",
" # Apply the rotary transformation\n",
" rotated = torch.cat((-x2, x1), dim=-1)\n",
" x_rotated = (x * cos) + (rotated * sin)\n",
"\n",
" return x_rotated.to(dtype=x.dtype)"
]
},
{
"cell_type": "markdown",
"id": "8e841b8e-75aa-49db-b1a7-d5c2116dc299",
"metadata": {
"id": "8e841b8e-75aa-49db-b1a7-d5c2116dc299"
},
"source": [
"- The following is an example of applying RoPE to the `q` and `k` tensors:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8c89f022-7167-4001-8c21-8e012878733f",
"metadata": {
"id": "8c89f022-7167-4001-8c21-8e012878733f"
},
"outputs": [],
"source": [
"# Settings\n",
"batch_size = 2\n",
"context_len = 5\n",
"num_heads = 4\n",
"head_dim = 16\n",
"\n",
"# Instantiate RoPE parameters\n",
"cos, sin = precompute_rope_params(head_dim=head_dim, context_length=context_len)\n",
"\n",
"# Dummy query and key tensors\n",
"torch.manual_seed(123)\n",
"queries = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
"keys = torch.randn(batch_size, num_heads, context_len, head_dim)\n",
"\n",
"# Apply rotary position embeddings\n",
"queries_rot = compute_rope(queries, cos, sin)\n",
"keys_rot = compute_rope(keys, cos, sin)"
]
},
{
"cell_type": "markdown",
"id": "f78127b0-dda2-4c5a-98dd-bae8f5fe8297",
"metadata": {
"id": "f78127b0-dda2-4c5a-98dd-bae8f5fe8297"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.5 Add RoPE to MultiHeadAttention module"
]
},
{
"cell_type": "markdown",
"id": "RnmSHROLhhR3",
"metadata": {
"id": "RnmSHROLhhR3"
},
"source": [
"- It's important to note that GPT applies the positional embeddings to the inputs, whereas Llama applies rotations to the query and key vectors in the self-attention mechanism itself\n",
"- Here, we modify the `MultiHeadAttention` class with the appropriate RoPE code\n",
"- In addition, we remove the `qkv_bias` option and hardcode the `bias=False` setting\n",
"- Also, we add a dtype setting to be able to instantiate the model with a lower precision later\n",
" - Tip: since the `TransformerBlock`s (in the next section) are repeated exactly, we could simplify the code and only initialize the buffers once instead for each `MultiHeadAttention` module; however, we add the precomputed RoPE parameters to the `MultiHeadAttention` class so that it can function as a standalone module"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d81a441e-0b79-4a8b-8291-ea7f55d58c84",
"metadata": {
"id": "d81a441e-0b79-4a8b-8291-ea7f55d58c84"
},
"outputs": [],
"source": [
"#####################################\n",
"# Chapter 3\n",
"#####################################\n",
"class MultiHeadAttention(nn.Module):\n",
" def __init__(self, d_in, d_out, context_length, num_heads, dtype=None): # ,dropout, num_heads, qkv_bias=False):\n",
" super().__init__()\n",
" assert d_out % num_heads == 0, \"d_out must be divisible by n_heads\"\n",
"\n",
" self.d_out = d_out\n",
" self.num_heads = num_heads\n",
" self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim\n",
"\n",
" ################################### NEW ###################################\n",
" # Set bias=False and dtype=dtype for all linear layers below\n",
" ###########################################################################\n",
" self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" self.W_key = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" self.W_value = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) # Linear layer to combine head outputs\n",
" # self.dropout = nn.Dropout(dropout)\n",
" self.register_buffer(\"mask\", torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
"\n",
" ################################### NEW ###################################\n",
" cos, sin = precompute_rope_params(head_dim=self.head_dim, context_length=context_length)\n",
" self.register_buffer(\"cos\", cos)\n",
" self.register_buffer(\"sin\", sin)\n",
" ###########################################################################\n",
"\n",
"\n",
" def forward(self, x):\n",
"\n",
" b, num_tokens, d_in = x.shape\n",
"\n",
" keys = self.W_key(x) # Shape: (b, num_tokens, d_out)\n",
" queries = self.W_query(x)\n",
" values = self.W_value(x)\n",
"\n",
" # We implicitly split the matrix by adding a `num_heads` dimension\n",
" # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)\n",
" keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)\n",
" values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
" queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
"\n",
" # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)\n",
" keys = keys.transpose(1, 2)\n",
" queries = queries.transpose(1, 2)\n",
" values = values.transpose(1, 2)\n",
"\n",
" ################################### NEW ###################################\n",
" keys = compute_rope(keys, self.cos, self.sin)\n",
" queries = compute_rope(queries, self.cos, self.sin)\n",
" ###########################################################################\n",
"\n",
" # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
" attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head\n",
"\n",
" # Original mask truncated to the number of tokens and converted to boolean\n",
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
"\n",
" # Use the mask to fill attention scores\n",
" attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
"\n",
" attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
" # attn_weights = self.dropout(attn_weights)\n",
"\n",
" # Shape: (b, num_tokens, num_heads, head_dim)\n",
" context_vec = (attn_weights @ values).transpose(1, 2)\n",
"\n",
" # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
" context_vec = context_vec.reshape(b, num_tokens, self.d_out)\n",
" context_vec = self.out_proj(context_vec) # optional projection\n",
"\n",
" return context_vec"
]
},
{
"cell_type": "markdown",
"id": "-lt9SfnVioB3",
"metadata": {
"id": "-lt9SfnVioB3"
},
"source": [
"- Below is an example using the `MultiHeadAttention` module on an example input:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "03f15755-0083-483f-963b-99b599651638",
"metadata": {
"id": "03f15755-0083-483f-963b-99b599651638"
},
"outputs": [],
"source": [
"# Settings\n",
"batch_size = 1\n",
"context_len = 100\n",
"max_context_len = 4096\n",
"embed_dim = 128\n",
"num_heads = 4\n",
"\n",
"\n",
"example_batch = torch.randn((batch_size, context_len, embed_dim))\n",
"\n",
"mha = MultiHeadAttention(\n",
" d_in=embed_dim,\n",
" d_out=embed_dim,\n",
" context_length=max_context_len,\n",
" num_heads=num_heads\n",
")\n",
"\n",
"mha(example_batch)\n",
"\n",
"del mha # delete to free up memory"
]
},
{
"cell_type": "markdown",
"id": "e5a1a272-a038-4b8f-aaaa-f4b241e7f23f",
"metadata": {
"id": "e5a1a272-a038-4b8f-aaaa-f4b241e7f23f"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.6 Update the TransformerBlock module"
]
},
{
"cell_type": "markdown",
"id": "255f70ac-9c2e-4328-8af7-1c298b8d4a18",
"metadata": {
"id": "255f70ac-9c2e-4328-8af7-1c298b8d4a18"
},
"source": [
"- At this stage, most of the hard work is already done; we can now update the `TransformerBlock` to use the code we implemented above\n",
"- This means we\n",
" - replace LayerNorm with RMSNorm\n",
" - remove dropout\n",
" - remove the `qkv_bias` setting\n",
" - add the `dtype` setting"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2e110721-bf2b-42b3-989a-1635b1658af0",
"metadata": {
"id": "2e110721-bf2b-42b3-989a-1635b1658af0"
},
"outputs": [],
"source": [
"class TransformerBlock(nn.Module):\n",
" def __init__(self, cfg):\n",
" super().__init__()\n",
" self.att = MultiHeadAttention(\n",
" d_in=cfg[\"emb_dim\"],\n",
" d_out=cfg[\"emb_dim\"],\n",
" context_length=cfg[\"context_length\"],\n",
" num_heads=cfg[\"n_heads\"],\n",
" dtype=cfg[\"dtype\"] # NEW\n",
" # dropout=cfg[\"drop_rate\"],\n",
" # qkv_bias=cfg[\"qkv_bias\"]\n",
" )\n",
" self.ff = FeedForward(cfg)\n",
"\n",
" ################################### NEW ###################################\n",
" # self.norm1 = LayerNorm(cfg[\"emb_dim\"])\n",
" # self.norm2 = LayerNorm(cfg[\"emb_dim\"])\n",
" self.norm1 = RMSNorm(cfg[\"emb_dim\"])\n",
" self.norm2 = RMSNorm(cfg[\"emb_dim\"])\n",
" ###########################################################################\n",
"\n",
" # self.drop_shortcut = nn.Dropout(cfg[\"drop_rate\"])\n",
"\n",
" def forward(self, x):\n",
" # Shortcut connection for attention block\n",
" shortcut = x\n",
" x = self.norm1(x)\n",
" x = self.att(x) # Shape [batch_size, num_tokens, emb_size]\n",
" # x = self.drop_shortcut(x)\n",
" x = x + shortcut # Add the original input back\n",
"\n",
" # Shortcut connection for feed-forward block\n",
" shortcut = x\n",
" x = self.norm2(x)\n",
" x = self.ff(x)\n",
" # x = self.drop_shortcut(x)\n",
" x = x + shortcut # Add the original input back\n",
"\n",
" return x"
]
},
{
"cell_type": "markdown",
"id": "ada953bc-e2c0-4432-a32d-3f7efa3f6e0f",
"metadata": {
"id": "ada953bc-e2c0-4432-a32d-3f7efa3f6e0f"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 1.7 Update the model class"
]
},
{
2024-09-23 08:56:16 -05:00
"cell_type": "markdown",
"id": "ba5d991a-559b-47be-96f4-31b881ab2da8",
"metadata": {
"id": "ba5d991a-559b-47be-96f4-31b881ab2da8"
},
"source": [
"- As you may recall from [chapter 5](../01_main-chapter-code/ch05.ipynb), the `TransformerBlock` is a repeated block within the main model\n",
"- Our Llama model is almost complete; we just have to update the model code surrounding the `TransformerBlock`\n",
"- This means we\n",
" - remove absolute positional embeddings since we have RoPE embeddings now\n",
" - replace LayerNorm with RMSNorm\n",
" - remove dropout\n",
" - add the dtype setting"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "cf8240fe-5d7f-4e7e-b1ac-e0755aab5e79",
"metadata": {
"id": "cf8240fe-5d7f-4e7e-b1ac-e0755aab5e79"
},
"outputs": [],
"source": [
"# class GPTModel(nn.Module):\n",
"class Llama2Model(nn.Module):\n",
" def __init__(self, cfg):\n",
" super().__init__()\n",
" self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"])\n",
" # self.pos_emb = nn.Embedding(cfg[\"context_length\"], cfg[\"emb_dim\"])\n",
" # self.drop_emb = nn.Dropout(cfg[\"drop_rate\"])\n",
"\n",
" self.trf_blocks = nn.Sequential(\n",
" *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n",
"\n",
" ################################### NEW ###################################\n",
" # self.final_norm = LayerNorm(cfg[\"emb_dim\"])\n",
" self.final_norm = RMSNorm(cfg[\"emb_dim\"])\n",
" ###########################################################################\n",
" self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
"\n",
" def forward(self, in_idx):\n",
" # batch_size, seq_len = in_idx.shape\n",
" tok_embeds = self.tok_emb(in_idx)\n",
" # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))\n",
" x = tok_embeds # + pos_embeds # Shape [batch_size, num_tokens, emb_size]\n",
" # x = self.drop_emb(x)\n",
" x = self.trf_blocks(x)\n",
" x = self.final_norm(x)\n",
" logits = self.out_head(x)\n",
" return logits"
]
},
{
"cell_type": "markdown",
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60",
"metadata": {
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 2. Initialize model"
]
},
{
"cell_type": "markdown",
"id": "bG--zY-Ljj1f",
"metadata": {
"id": "bG--zY-Ljj1f"
},
"source": [
"- The model code is now complete, and we are ready to initialize it\n",
"- In [chapter 5](../01_main-chapter-code/ch05.ipynb), we used the following config file to specify the 124M-parameter GPT model:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "4b7428df-3d02-4ccd-97b5-a629bdabbe8f",
"metadata": {
"id": "4b7428df-3d02-4ccd-97b5-a629bdabbe8f"
},
"outputs": [],
"source": [
"GPT_CONFIG_124M = {\n",
" \"vocab_size\": 50257, # Vocabulary size\n",
" \"context_length\": 1024, # Context length\n",
" \"emb_dim\": 768, # Embedding dimension\n",
" \"n_heads\": 12, # Number of attention heads\n",
" \"n_layers\": 12, # Number of layers\n",
" \"drop_rate\": 0.1, # Dropout rate\n",
" \"qkv_bias\": False # Query-Key-Value bias\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "8bVi8uiBjw2T",
"metadata": {
"id": "8bVi8uiBjw2T"
},
"source": [
"- For reference, the 1.5B parameter GPT model config is shown below as well:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "tAOojV_mkEnd",
"metadata": {
"id": "tAOojV_mkEnd"
},
"outputs": [],
"source": [
"GPT_CONFIG_1558M = {\n",
" \"vocab_size\": 50257, # Vocabulary size\n",
" \"context_length\": 1024, # Context length\n",
" \"emb_dim\": 1600, # Embedding dimension\n",
" \"n_heads\": 25, # Number of attention heads\n",
" \"n_layers\": 48, # Number of layers\n",
" \"drop_rate\": 0.1, # Dropout rate\n",
" \"qkv_bias\": False # Query-Key-Value bias\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "HoGGRAGykQTE",
"metadata": {
"id": "HoGGRAGykQTE"
},
"source": [
"- Similarly, we can define a Llama 2 config file for the 7B model (we ignore the other larger models for simplicity here):"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18",
"metadata": {
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18"
},
"outputs": [],
"source": [
"LLAMA2_CONFIG_7B = {\n",
" \"vocab_size\": 32000, # Vocabulary size\n",
" \"context_length\": 4096, # Context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 11008, # NEW: Size of the intermediate dimension in FeedForward\n",
" \"dtype\": torch.bfloat16 # NEW: Lower-precision dtype to reduce memory usage\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "FAP7fiBzkaBz",
"metadata": {
"id": "FAP7fiBzkaBz"
},
"source": [
"- Using these settings, we can now initialize a Llama 2 7B model (note that this requires ~26 GB of memory)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "7004d785-ac9a-4df5-8760-6807fc604686",
"metadata": {
"id": "7004d785-ac9a-4df5-8760-6807fc604686"
},
"outputs": [],
"source": [
"model = Llama2Model(LLAMA2_CONFIG_7B)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
"outputId": "0a0eb34b-1a21-4c11-804f-b40007bda5a3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of parameters: 6,738,415,616\n"
]
}
],
"source": [
"total_params = sum(p.numel() for p in model.parameters())\n",
"print(f\"Total number of parameters: {total_params:,}\")"
]
},
{
"cell_type": "markdown",
"id": "Bx14NtzWk2wj",
"metadata": {
"id": "Bx14NtzWk2wj"
},
"source": [
"- As shown above, the model contains 6.7 billion parameters (commonly rounded and referred to as a 7B model)\n",
"- Additionally, we can calculate the memory requirements for this model using the code below:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
"outputId": "11ced939-556d-4511-d5c0-10a94ed3df32"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"float32 (PyTorch default): 52.33 GB\n",
"bfloat16: 26.17 GB\n"
]
}
],
"source": [
"def model_memory_size(model, input_dtype=torch.float32):\n",
" total_params = 0\n",
" total_grads = 0\n",
" for param in model.parameters():\n",
" # Calculate total number of elements per parameter\n",
" param_size = param.numel()\n",
" total_params += param_size\n",
" # Check if gradients are stored for this parameter\n",
" if param.requires_grad:\n",
" total_grads += param_size\n",
"\n",
" # Calculate buffer size (non-parameters that require memory)\n",
" total_buffers = sum(buf.numel() for buf in model.buffers())\n",
"\n",
" # Size in bytes = (Number of elements) * (Size of each element in bytes)\n",
" # We assume parameters and gradients are stored in the same type as input dtype\n",
" element_size = torch.tensor(0, dtype=input_dtype).element_size()\n",
" total_memory_bytes = (total_params + total_grads + total_buffers) * element_size\n",
"\n",
" # Convert bytes to gigabytes\n",
" total_memory_gb = total_memory_bytes / (1024**3)\n",
"\n",
" return total_memory_gb\n",
"\n",
"print(f\"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB\")\n",
"print(f\"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB\")"
]
},
{
"cell_type": "markdown",
"id": "zudd-5PulKFL",
"metadata": {
"id": "zudd-5PulKFL"
},
"source": [
"- Lastly, we can also transfer the model to an NVIDIA or Apple Silicon GPU if applicable:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d",
"metadata": {
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d"
},
"outputs": [],
"source": [
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
"elif torch.backends.mps.is_available():\n",
" device = torch.device(\"mps\")\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
"\n",
"model.to(device);"
]
},
{
"cell_type": "markdown",
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34",
"metadata": {
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 3. Load tokenizer"
]
},
{
"cell_type": "markdown",
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005",
"metadata": {
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005"
},
"source": [
"- In this section, we are going to load the tokenizer for the model\n",
"- Llama 2 uses Google's [SentencePiece](https://github.com/google/sentencepiece) tokenizer instead of OpenAI's [Tiktoken](https://github.com/openai/tiktoken) (but Llama 3 uses Tiktoken)\n",
"- Meta AI shared the original Llama 2 model weights and tokenizer vocabulary on the Hugging Face Hub\n",
"- We will download the tokenizer vocabulary from the Hub and load it into SentencePiece\n",
"- Uncomment and run the following code to install the required libraries:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "768989ea-dc60-4dc8-ae84-cbb3fd224422",
"metadata": {
"id": "768989ea-dc60-4dc8-ae84-cbb3fd224422"
},
"outputs": [],
"source": [
"# !pip install huggingface_hub sentencepiece"
]
},
{
"cell_type": "markdown",
"id": "KbnlzsbYmJU6",
"metadata": {
"id": "KbnlzsbYmJU6"
},
"source": [
"- Please note that Meta AI requires that you accept the Llama 2 licensing terms before you can download the files; to do this, you have to create a Hugging Face Hub account and visit the [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) repository to accept the terms\n",
"- Next, you will need to create an access token; to generate an access token with READ permissions, click on the profile picture in the upper right and click on \"Settings\"\n",
"\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/settings.webp?1\" width=\"300px\">\n",
"\n",
"- Then, create and copy the access token so you can copy & paste it into the next code cell\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/access-token.webp?1\" width=\"600px\">"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "3357a230-b678-4691-a238-257ee4e80185",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3357a230-b678-4691-a238-257ee4e80185",
"outputId": "768ed6af-ce14-40bc-ca18-117b4b448269"
},
"outputs": [],
"source": [
"from huggingface_hub import login\n",
2024-09-23 09:12:31 -05:00
"import json\n",
"\n",
2024-09-23 08:56:16 -05:00
"with open(\"config.json\", \"r\") as config_file:\n",
" config = json.load(config_file)\n",
" access_token = config[\"HF_ACCESS_TOKEN\"]\n",
"\n",
"login(token=access_token)"
]
},
{
"cell_type": "markdown",
"id": "IxGh6ZYQo0VN",
"metadata": {
"id": "IxGh6ZYQo0VN"
},
"source": [
"- After login via the access token, which is necessary to verify that we accepted the Llama 2 licensing terms, we can now download the tokenizer vocabulary:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 153,
"referenced_widgets": [
"e6c75a6aa7b942fe84160e286e3acb3d",
"08f0bf9459bd425498a5cb236f9d4a72",
"10251d6f724e43788c41d4b7879cbfd3",
"53a973c0853b44418698136bd04df039",
"bdb071e7145a4007ae01599333e72612",
"6b1821a7f4574e3aba09c1e410cc81e4",
"8c2873eaec3445888ad3d54ad7387950",
"0c8f7044966e4207b12352503c67dcbb",
"8b5951213c9e4798a258146d61d02d11",
"2c05df3f91e64df7b33905b1065a76f7",
"742ae5487f2648fcae7ca8e22c7f8db9"
]
},
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
"outputId": "c230fec9-5c71-4a41-90ab-8a34d114ea01"
},
"outputs": [],
"source": [
"from huggingface_hub import hf_hub_download\n",
"\n",
"tokenizer_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-2-7b\",\n",
" filename=\"tokenizer.model\",\n",
" local_dir=\"Llama-2-7b\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "gp7iQ8cXAJLv",
"metadata": {
"id": "gp7iQ8cXAJLv"
},
"source": [
"- To provide a more familiar interface for the tokenizer, we define a small `LlamaTokenizer` wrapper class:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "Ef4WxhjOBOOc",
"metadata": {
"id": "Ef4WxhjOBOOc"
},
"outputs": [],
"source": [
"import sentencepiece as spm\n",
"\n",
"\n",
"class LlamaTokenizer:\n",
" def __init__(self, tokenizer_file):\n",
" sp = spm.SentencePieceProcessor()\n",
" sp.load(tokenizer_file)\n",
" self.tokenizer = sp\n",
"\n",
" def encode(self, text):\n",
" return self.tokenizer.encode(text, out_type=int)\n",
"\n",
" def decode(self, ids):\n",
" return self.tokenizer.decode(ids)\n",
"\n",
"\n",
"tokenizer = LlamaTokenizer(tokenizer_file)"
]
},
{
"cell_type": "markdown",
"id": "NVhmFeX3pT_M",
"metadata": {
"id": "NVhmFeX3pT_M"
},
"source": [
"- We can now use the `generate` function to have the Llama 2 model generate new text:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
"outputId": "acd5065d-8900-4ba8-ef85-968365f3a0cb"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort movesαllRadius deletingpretcc否']; future eer napulate lackус während inter DES издаSchéonkkarto Оryptato#{ningproof eerbye\n"
]
}
],
"source": [
"from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n",
"# If the `previous_chapters.py` file is not available locally,\n",
"# you can import it from the `llms-from-scratch` PyPI package.\n",
"# For details, see: https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n",
"# E.g.,\n",
"# from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n",
"\n",
"\n",
"\n",
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
" max_new_tokens=30,\n",
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
{
"cell_type": "markdown",
"id": "93WTtAA5paYV",
"metadata": {
"id": "93WTtAA5paYV"
},
"source": [
"- Of course, as we can see above, the text is nonsensical since we haven't trained the Llama 2 model yet\n",
"- In the next section, instead of training it ourselves, which would cost tens to hundreds of thousands of dollars, we load the pretrained weights from Meta AI"
]
},
{
"cell_type": "markdown",
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8",
"metadata": {
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8"
},
"source": [
2024-10-05 07:30:47 -05:00
"&nbsp;\n",
2024-09-30 08:42:22 -05:00
"## 4. Load pretrained weights"
]
},
{
"cell_type": "markdown",
"id": "aKeN7rUfqZMI",
"metadata": {
"id": "aKeN7rUfqZMI"
},
"source": [
"- We are loading the [\"meta-llama/Llama-2-7b\"](https://huggingface.co/meta-llama/Llama-2-7b) base model below, which is a simple text completion model before finetuning\n",
"- Alternatively, you can load the instruction-finetuned and aligned [\"meta-llama/Llama-2-7b-chat\"](https://huggingface.co/meta-llama/Llama-2-7b-chat) model by modifying the string in the next code cell accordingly"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"66e777955e8748df878f118f07f38dab",
"da89ae3ea4d2474e98f64ada608f3cea",
"93e6da39c25f4edfaa72056c89df1f7f",
"b628603e4cb0405398c916587ee96756",
"93bedcb9245e44a0a1eb7e4155070f66",
"0723f467d37b4904819a8bb33ebda10f",
"e54928776bc649339002adced63738b0",
"d8e0f42068af4cb094e2f115f76e06e0",
"0a939565b6e94f08bee0a66e0f9827d4",
"a5fedbb7ec2e43d99711bb4cd84b9486",
"0c186f6539714d8eab023969ce47c500"
]
},
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
"outputId": "0d8942cc-e5e2-4e77-ec41-1ac7bec7d94f"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "66e777955e8748df878f118f07f38dab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"consolidated.00.pth: 0%| | 0.00/13.5G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-2-7b\",\n",
" filename=\"consolidated.00.pth\",\n",
" local_dir=\"Llama-2-7b\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e67cca5c-ba4b-4be5-85c7-fdceae8a5701",
"metadata": {
"id": "e67cca5c-ba4b-4be5-85c7-fdceae8a5701"
},
"outputs": [],
"source": [
"weights = torch.load(weights_file, weights_only=True)"
]
},
{
"cell_type": "markdown",
"id": "-15SJ7btq2zE",
"metadata": {
"id": "-15SJ7btq2zE"
},
"source": [
"- The `weights` contains the following tensors (only the first 15 are shown for simplicity):"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
"outputId": "fa83d38a-bb41-4cb2-d3c7-c573bfe1f8a4"
},
"outputs": [
{
"data": {
"text/plain": [
"['tok_embeddings.weight',\n",
" 'norm.weight',\n",
" 'output.weight',\n",
" 'layers.0.attention.wq.weight',\n",
" 'layers.0.attention.wk.weight',\n",
" 'layers.0.attention.wv.weight',\n",
" 'layers.0.attention.wo.weight',\n",
" 'layers.0.feed_forward.w1.weight',\n",
" 'layers.0.feed_forward.w2.weight',\n",
" 'layers.0.feed_forward.w3.weight',\n",
" 'layers.0.attention_norm.weight',\n",
" 'layers.0.ffn_norm.weight',\n",
" 'layers.1.attention.wq.weight',\n",
" 'layers.1.attention.wk.weight',\n",
" 'layers.1.attention.wv.weight']"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(weights.keys())[:15]"
]
},
{
"cell_type": "markdown",
"id": "UeeSpnunrDFB",
"metadata": {
"id": "UeeSpnunrDFB"
},
"source": [
"- The following function, modeled after the `load_weights_into_gpt` function in [chapter 5](../01_main-chapter-code/ch05.ipynb), loads the pretrained weights into our Llama 2 model:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65",
"metadata": {
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65"
},
"outputs": [],
"source": [
"def assign(left, right):\n",
" if left.shape != right.shape:\n",
" raise ValueError(f\"Shape mismatch. Left: {left.shape}, Right: {right.shape}\")\n",
"\n",
" if isinstance(right, torch.Tensor):\n",
" return torch.nn.Parameter(right.clone().detach())\n",
" else:\n",
" return torch.nn.Parameter(torch.tensor(right))\n",
"\n",
"\n",
"def load_weights_into_llama(model, param_config, params):\n",
" model.tok_emb.weight = assign(model.tok_emb.weight, params[\"tok_embeddings.weight\"])\n",
"\n",
" for l in range(param_config[\"n_layers\"]):\n",
"\n",
" # Load attention weights\n",
" model.trf_blocks[l].att.W_query.weight = assign(\n",
" model.trf_blocks[l].att.W_query.weight,\n",
" params[f\"layers.{l}.attention.wq.weight\"]\n",
" )\n",
" model.trf_blocks[l].att.W_key.weight = assign(\n",
" model.trf_blocks[l].att.W_key.weight,\n",
" params[f\"layers.{l}.attention.wk.weight\"]\n",
" )\n",
" model.trf_blocks[l].att.W_value.weight = assign(\n",
" model.trf_blocks[l].att.W_value.weight,\n",
" params[f\"layers.{l}.attention.wv.weight\"]\n",
" )\n",
" model.trf_blocks[l].att.out_proj.weight = assign(\n",
" model.trf_blocks[l].att.out_proj.weight,\n",
" params[f\"layers.{l}.attention.wo.weight\"]\n",
" )\n",
" model.trf_blocks[l].norm1.weight = assign(\n",
" model.trf_blocks[l].norm1.weight,\n",
" params[f\"layers.{l}.attention_norm.weight\"]\n",
" )\n",
"\n",
" # Load FeedForward weights\n",
" model.trf_blocks[l].ff.fc1.weight = assign(\n",
" model.trf_blocks[l].ff.fc1.weight,\n",
" params[f\"layers.{l}.feed_forward.w1.weight\"]\n",
" )\n",
" # For some reason w2 and w3 are provided in the wrong order in the weights file\n",
" model.trf_blocks[l].ff.fc2.weight = assign(\n",
" model.trf_blocks[l].ff.fc2.weight,\n",
" params[f\"layers.{l}.feed_forward.w3.weight\"]\n",
" )\n",
" model.trf_blocks[l].ff.fc3.weight = assign(\n",
" model.trf_blocks[l].ff.fc3.weight,\n",
" params[f\"layers.{l}.feed_forward.w2.weight\"]\n",
" )\n",
" model.trf_blocks[l].norm2.weight = assign(\n",
" model.trf_blocks[l].norm2.weight,\n",
" params[f\"layers.{l}.ffn_norm.weight\"]\n",
" )\n",
"\n",
" # Load output layer weights\n",
" model.final_norm.weight = assign(model.final_norm.weight, params[\"norm.weight\"])\n",
" model.out_head.weight = assign(model.out_head.weight, params[\"output.weight\"])\n",
"\n",
"\n",
"load_weights_into_llama(model, LLAMA2_CONFIG_7B, weights)\n",
"model.to(device);"
]
},
{
"cell_type": "markdown",
"id": "TDuv_Us2rNvk",
"metadata": {
"id": "TDuv_Us2rNvk"
},
"source": [
"- Next, we are ready to use the model for text generation"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "240987e8-a023-462e-9376-9edfb27559ec",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "240987e8-a023-462e-9376-9edfb27559ec",
"outputId": "044f24b3-4018-4860-834d-6c2731b9e47c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort has been made to ensure that the information contained in this website is accurate and up to date and correct at the time of publication\n"
]
}
],
"source": [
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
" max_new_tokens=25,\n",
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
2024-10-05 07:30:47 -05:00
{
"cell_type": "markdown",
"id": "d72ed949-b6c0-4966-922f-eb0da732c404",
"metadata": {},
"source": [
"&nbsp;\n",
"## 5. Using the instruction-finetuned model"
]
},
{
"cell_type": "markdown",
"id": "akyo7WNyF_YL",
"metadata": {
"id": "akyo7WNyF_YL"
},
"source": [
2024-10-05 07:30:47 -05:00
"- As mentioned earlier, above we used the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-2-7b-chat\"` model instead, as shown below"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "nbvAV7vaz6yc",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 101,
"referenced_widgets": [
"3b2448a60f5f4ba5b2c686037c8ecd78",
"60c5932944f24f5fad1d8da89c8e5ae9",
"aa31aed1b8854a4281fd7e81c60e1205",
"d4acf06c2414412f8f2fb4f48981c954",
"693d69251d3d48219c084af17b54b851",
"ff36d28c55dd4db3a0f76a87640fdfe2",
"71c49ef820494d5f8908a3daf39f0755",
"525dc406534f4369b11208816f8fd0d7",
"865f39213a7341b68f2fe73caaf801b1",
"eaf4c0231b6d4993b2f8e9e63d8b6921",
"a11edf3b018e42c88a63a515cf7fe478"
]
},
"id": "nbvAV7vaz6yc",
"outputId": "724f5508-d976-4e31-b3d7-95fa65b2c1e8"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b2448a60f5f4ba5b2c686037c8ecd78",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"consolidated.00.pth: 0%| | 0.00/13.5G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" What do llamas eat?\n",
"Llamas and alpacas are herbivores, which means they eat grasses, leaves, grass\n"
]
}
],
"source": [
"del model # to free up memory\n",
"\n",
"weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-2-7b-chat\",\n",
" filename=\"consolidated.00.pth\",\n",
" local_dir=\"Llama-2-7b-chat\"\n",
")\n",
"\n",
"model = Llama2Model(LLAMA2_CONFIG_7B)\n",
"load_weights_into_llama(model, LLAMA2_CONFIG_7B, weights)\n",
"model.to(device);\n",
"\n",
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"What do llamas eat?\", tokenizer).to(device),\n",
" max_new_tokens=25,\n",
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
2024-10-05 07:30:47 -05:00
},
{
"cell_type": "markdown",
"id": "0f693da1-a07c-4e1d-af5a-c3923525f1e2",
"metadata": {},
"source": [
"&nbsp;\n",
"# What's next?"
]
},
{
"cell_type": "markdown",
"id": "fae93739-ca12-46ba-8ca7-7c07c59f669b",
"metadata": {},
"source": [
"- This notebook converted the original GPT-2 architecture into a Llama 2 model\n",
"- If you are interested in how to convert Llama 2 into Llama 3, Llama 3.1, and Llama 3.2, check out the [converting-llama2-to-llama3.ipynb](converting-llama2-to-llama3.ipynb) notebook"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}