mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-07-05 08:01:31 +00:00
1569 lines
52 KiB
Plaintext
1569 lines
52 KiB
Plaintext
![]() |
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "0_xya1nyDHfY",
|
|||
|
"metadata": {
|
|||
|
"id": "0_xya1nyDHfY"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"<table style=\"width:100%\">\n",
|
|||
|
"<tr>\n",
|
|||
|
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
|||
|
"<font size=\"2\">\n",
|
|||
|
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
|
|||
|
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
|
|||
|
"</font>\n",
|
|||
|
"</td>\n",
|
|||
|
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
|||
|
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
|
|||
|
"</td>\n",
|
|||
|
"</tr>\n",
|
|||
|
"</table>"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "l62zIRRSBy_R",
|
|||
|
"metadata": {
|
|||
|
"id": "l62zIRRSBy_R"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Converting a From-Scratch GPT Architecture to Llama 2"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "aFmxTQbwCUMl",
|
|||
|
"metadata": {
|
|||
|
"id": "aFmxTQbwCUMl"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- In this notebook, we convert the original GPT and GPT-2 architecture into a Llama 2 model step by step\n",
|
|||
|
"- Why not Llama 1 or Llama 3?\n",
|
|||
|
" - The Llama 1 architecture is similar to Llama 2, except that Llama 2 has a larger context window (which is nice); the Llama 1 weights are not readily available and have more usage restrictions, so it makes more sense to focus on Llama 2\n",
|
|||
|
" - Regarding Llama 3, I will share a separate notebook to convert Llama 2 to Llama 3 (there are only a few small additional changes)\n",
|
|||
|
"- The explanations are purposefully kept minimal in this notebook not to bloat it unnecessarily and focus on the main code\n",
|
|||
|
"- For more information, please see the Llama 2 paper: [Llama 2: Open Foundation and Fine-Tuned Chat Models (2023)](https://arxiv.org/abs/2307.09288)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ohhMKUWvGm9z",
|
|||
|
"metadata": {
|
|||
|
"id": "ohhMKUWvGm9z"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt2-to-llama2.webp?1\" width=\"800px\">"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "JBpQwU89ETA1",
|
|||
|
"metadata": {
|
|||
|
"id": "JBpQwU89ETA1"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Packages that are being used in this notebook:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
|
|||
|
"outputId": "d0fc89be-74a3-40d0-bc4d-7f6f1febf2cd"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"huggingface_hub version: 0.24.7\n",
|
|||
|
"sentencepiece version: 0.1.99\n",
|
|||
|
"torch version: 2.4.1+cu121\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from importlib.metadata import version\n",
|
|||
|
"\n",
|
|||
|
"pkgs = [\n",
|
|||
|
" \"huggingface_hub\", # to download pretrained weights\n",
|
|||
|
" \"sentencepiece\", # to implement the tokenizer\n",
|
|||
|
" \"torch\", # to implement the model\n",
|
|||
|
"]\n",
|
|||
|
"for p in pkgs:\n",
|
|||
|
" print(f\"{p} version: {version(p)}\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "UJJneXpTEg4W",
|
|||
|
"metadata": {
|
|||
|
"id": "UJJneXpTEg4W"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 1. Convert the GPT model implementation step by step"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "v1zpfX2GHBKa",
|
|||
|
"metadata": {
|
|||
|
"id": "v1zpfX2GHBKa"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- In this section, we go through the GPT model code from [chapter 4](../../ch04/01_main-chapter-code/ch04.ipynb) and modify it step by step to implement the Llama 2 architecture\n",
|
|||
|
"- Later, we load the original Llama 2 weights shared by Meta AI"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f",
|
|||
|
"metadata": {
|
|||
|
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"### 1.2 Replace LayerNorm with RMSNorm layer"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "f8b27fc8-23a1-4e0e-a1ea-792e0428e5e6",
|
|||
|
"metadata": {
|
|||
|
"id": "f8b27fc8-23a1-4e0e-a1ea-792e0428e5e6"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- First, we replace LayerNorm by Root Mean Square Layer Normalization (RMSNorm)\n",
|
|||
|
"- LayerNorm normalizes inputs using mean and variance, while RMSNorm uses only the root mean square, which improves computational efficiency\n",
|
|||
|
"- The RMSNorm operation is as follows, where $x$ is the input $\\gamma$ is a trainable parameter (vector), and $\\epsilon$ is a small constant to avoid zero-division errors:\n",
|
|||
|
"\n",
|
|||
|
"$$y = \\frac{x}{\\sqrt{\\text{RMS}[x]} + \\epsilon} * \\gamma$$\n",
|
|||
|
"\n",
|
|||
|
"- For more details, please see the paper [Root Mean Square Layer Normalization (2019)](https://arxiv.org/abs/1910.07467)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"id": "d7094381-9499-4e9e-93f9-b79470da3771",
|
|||
|
"metadata": {
|
|||
|
"id": "d7094381-9499-4e9e-93f9-b79470da3771"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import torch\n",
|
|||
|
"import torch.nn as nn\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"#####################################\n",
|
|||
|
"# Chapter 4\n",
|
|||
|
"#####################################\n",
|
|||
|
"\n",
|
|||
|
"# class LayerNorm(nn.Module):\n",
|
|||
|
"# def __init__(self, emb_dim):\n",
|
|||
|
"# super().__init__()\n",
|
|||
|
"# self.eps = 1e-5\n",
|
|||
|
"# self.scale = nn.Parameter(torch.ones(emb_dim))\n",
|
|||
|
"# self.shift = nn.Parameter(torch.zeros(emb_dim))\n",
|
|||
|
"\n",
|
|||
|
"# def forward(self, x):\n",
|
|||
|
"# mean = x.mean(dim=-1, keepdim=True)\n",
|
|||
|
"# var = x.var(dim=-1, keepdim=True, unbiased=False)\n",
|
|||
|
"# norm_x = (x - mean) / torch.sqrt(var + self.eps)\n",
|
|||
|
"# return self.scale * norm_x + self.shift\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"class RMSNorm(nn.Module):\n",
|
|||
|
" def __init__(self, emb_dim, eps=1e-6):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" self.eps = eps\n",
|
|||
|
" self.emb_dim = emb_dim\n",
|
|||
|
" self.weight = nn.Parameter(torch.ones(emb_dim)).float()\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" means = x.pow(2).mean(dim=-1, keepdim=True)\n",
|
|||
|
" x_normed = x * torch.rsqrt(means + self.eps)\n",
|
|||
|
" return (x_normed * self.weight).to(dtype=x.dtype)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "mtWC8DOmIu0F",
|
|||
|
"metadata": {
|
|||
|
"id": "mtWC8DOmIu0F"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The following code cell checks that this implementation works the same as PyTorch's built-in implementation:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"id": "e41ade7a-bf06-48b1-8b7e-0e4037d5753f",
|
|||
|
"metadata": {
|
|||
|
"id": "e41ade7a-bf06-48b1-8b7e-0e4037d5753f"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"torch.manual_seed(123)\n",
|
|||
|
"\n",
|
|||
|
"example_batch = torch.randn(2, 3, 4)\n",
|
|||
|
"\n",
|
|||
|
"rms_norm = RMSNorm(emb_dim=example_batch.shape[-1])\n",
|
|||
|
"rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-6)\n",
|
|||
|
"\n",
|
|||
|
"assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "5eb81f83-c38c-46a4-b763-aa630a32e357",
|
|||
|
"metadata": {
|
|||
|
"id": "5eb81f83-c38c-46a4-b763-aa630a32e357"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Replace GELU with SiLU activation"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "0b8aa702-f118-4ff6-9135-90725ec8756c",
|
|||
|
"metadata": {
|
|||
|
"id": "0b8aa702-f118-4ff6-9135-90725ec8756c"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Llama uses the SiLU activation function (instead of GELU), which is also known as the Swish function:\n",
|
|||
|
"\n",
|
|||
|
"$$\n",
|
|||
|
"\\text{silu}(x) = x \\cdot \\sigma(x), \\quad \\text{where} \\quad \\sigma(x) \\text{ is the logistic sigmoid.}\n",
|
|||
|
"$$\n",
|
|||
|
"\n",
|
|||
|
"- For more information, see the SiLU paper: [Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning (2017)](https://arxiv.org/abs/1702.03118)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"id": "a74f3757-c634-4a3a-a8f3-6334cde454fe",
|
|||
|
"metadata": {
|
|||
|
"id": "a74f3757-c634-4a3a-a8f3-6334cde454fe"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#####################################\n",
|
|||
|
"# Chapter 4\n",
|
|||
|
"#####################################\n",
|
|||
|
"\n",
|
|||
|
"# class GELU(nn.Module):\n",
|
|||
|
"# def __init__(self):\n",
|
|||
|
"# super().__init__()\n",
|
|||
|
"\n",
|
|||
|
"# def forward(self, x):\n",
|
|||
|
"# return 0.5 * x * (1 + torch.tanh(\n",
|
|||
|
"# torch.sqrt(torch.tensor(2.0 / torch.pi)) *\n",
|
|||
|
"# (x + 0.044715 * torch.pow(x, 3))\n",
|
|||
|
"# ))\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"class SiLU(nn.Module):\n",
|
|||
|
" def __init__(self):\n",
|
|||
|
" super(SiLU, self).__init__()\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" return x * torch.sigmoid(x)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"id": "72ecbe2e-b6b7-4319-972b-1a7fefa3368c",
|
|||
|
"metadata": {
|
|||
|
"id": "72ecbe2e-b6b7-4319-972b-1a7fefa3368c"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"silu = SiLU()\n",
|
|||
|
"\n",
|
|||
|
"assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "4f9b5167-1da9-46c8-9964-8036b3b1deb9",
|
|||
|
"metadata": {
|
|||
|
"id": "4f9b5167-1da9-46c8-9964-8036b3b1deb9"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Update the FeedForward module"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "3a381e7a-b807-472e-91c9-3e4e3fc5ad91",
|
|||
|
"metadata": {
|
|||
|
"id": "3a381e7a-b807-472e-91c9-3e4e3fc5ad91"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- In fact, Llama uses a \"Gates Linear Unit\" (GLU) variant of SiLU called SwiGLU, which essentially results in a slightly differently structured `FeedForward` module\n",
|
|||
|
"- SwiGLU uses a gating mechanism in the feedforward layer, with the formula:\n",
|
|||
|
"\n",
|
|||
|
"$$\\text{SwiGLU}(x) = (\\text{Linear}_1(x) * \\text{SiLU}(\\text{Linear}_2(x)))$$\n",
|
|||
|
"\n",
|
|||
|
"- Here, $\\text{Linear}_1$ and $\\text{Linear}_2$ are two linear layers, and $*$ denotes element-wise multiplication\n",
|
|||
|
"- The third linear layer, $\\text{Linear}_3$, is applied after this gated activation\n",
|
|||
|
"\n",
|
|||
|
"- For more information, see SwiGLU paper: [GLU Variants Improve Transformer (2020)](https://arxiv.org/abs/2002.05202)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"id": "d25fbe3d-b7c9-4772-ad67-bc0527e4e20a",
|
|||
|
"metadata": {
|
|||
|
"id": "d25fbe3d-b7c9-4772-ad67-bc0527e4e20a"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#####################################\n",
|
|||
|
"# Chapter 4\n",
|
|||
|
"#####################################\n",
|
|||
|
"# class FeedForward(nn.Module):\n",
|
|||
|
"# def __init__(self, cfg):\n",
|
|||
|
"# super().__init__()\n",
|
|||
|
"# self.layers = nn.Sequential(\n",
|
|||
|
"# nn.Linear(cfg[\"emb_dim\"], 4 * cfg[\"emb_dim\"]),\n",
|
|||
|
"# GELU(),\n",
|
|||
|
"# nn.Linear(4 * cfg[\"emb_dim\"], cfg[\"emb_dim\"]),\n",
|
|||
|
"# )\n",
|
|||
|
"\n",
|
|||
|
"# def forward(self, x):\n",
|
|||
|
"# return self.layers(x)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"id": "477568cb-03cd-4510-b663-a42ce3ec64a2",
|
|||
|
"metadata": {
|
|||
|
"id": "477568cb-03cd-4510-b663-a42ce3ec64a2"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class FeedForward(nn.Module):\n",
|
|||
|
" def __init__(self, cfg):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" self.fc1 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
|
|||
|
" self.fc2 = nn.Linear(cfg[\"emb_dim\"], cfg[\"hidden_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
|
|||
|
" self.fc3 = nn.Linear(cfg[\"hidden_dim\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"], bias=False)\n",
|
|||
|
" self.silu = SiLU()\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" x_fc1 = self.fc1(x)\n",
|
|||
|
" x_fc2 = self.fc2(x)\n",
|
|||
|
" x = self.silu(x_fc1) * x_fc2\n",
|
|||
|
" return self.fc3(x)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "qcD8LSHNhBRW",
|
|||
|
"metadata": {
|
|||
|
"id": "qcD8LSHNhBRW"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Note that we also added a `dtype=cfg[\"dtype\"]` setting above, which will allow us to load the model directly in lower precision formats later to save memory (versus instantiating it in the original 32-bit precision format and then converting it)\n",
|
|||
|
"- We also set `bias=False` since Llama doesn't use any bias units"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "f6b7bf4f-99d0-42c1-807c-5074d2cc1949",
|
|||
|
"metadata": {
|
|||
|
"id": "f6b7bf4f-99d0-42c1-807c-5074d2cc1949"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Implement RoPE"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "d3487a6f-0373-49d8-b2eb-f8ee05d42884",
|
|||
|
"metadata": {
|
|||
|
"id": "d3487a6f-0373-49d8-b2eb-f8ee05d42884"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- In the GPT model, the positional embeddings are implemented as follows:\n",
|
|||
|
"\n",
|
|||
|
"```python\n",
|
|||
|
"self.pos_emb = nn.Embedding(cfg[\"context_length\"], cfg[\"emb_dim\"])\n",
|
|||
|
"```\n",
|
|||
|
"\n",
|
|||
|
"- Instead of these absolute positional embeddings, Llama uses relative positional embeddings, called rotary position embeddings (RoPE for short)\n",
|
|||
|
"- The reference paper for RoPE is [RoFormer: Enhanced Transformer with Rotary Position Embedding (2021)](https://arxiv.org/abs/2104.09864)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"id": "a34180fb-448f-44e9-a244-0c736051687b",
|
|||
|
"metadata": {
|
|||
|
"id": "a34180fb-448f-44e9-a244-0c736051687b"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def precompute_rope_params(head_dim, context_length=4096):\n",
|
|||
|
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
|
|||
|
"\n",
|
|||
|
" # Compute the inverse frequencies\n",
|
|||
|
" inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2) / head_dim))\n",
|
|||
|
"\n",
|
|||
|
" # Generate position indices\n",
|
|||
|
" positions = torch.arange(context_length)\n",
|
|||
|
"\n",
|
|||
|
" # Compute the angles using inverse frequencies and positions\n",
|
|||
|
" angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, emb_dim // 2)\n",
|
|||
|
"\n",
|
|||
|
" # Precompute sine and cosine of the angles\n",
|
|||
|
" sin = torch.sin(angles) # Shape: (context_length, emb_dim // 2)\n",
|
|||
|
" cos = torch.cos(angles) # Shape: (context_length, emb_dim // 2)\n",
|
|||
|
"\n",
|
|||
|
" return sin, cos\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"def compute_rope(x, sin, cos):\n",
|
|||
|
" # x: (batch_size, num_heads, seq_len, head_dim)\n",
|
|||
|
" batch_size, num_heads, seq_len, head_dim = x.shape\n",
|
|||
|
" assert head_dim % 2 == 0, \"Head dimension must be even\"\n",
|
|||
|
"\n",
|
|||
|
" # Split x into even and odd parts\n",
|
|||
|
" x1 = x[..., ::2] # Shape: (batch_size, num_heads, seq_len, head_dim // 2)\n",
|
|||
|
" x2 = x[..., 1::2]\n",
|
|||
|
"\n",
|
|||
|
" # Ensure sin and cos have correct shapes\n",
|
|||
|
" sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim // 2)\n",
|
|||
|
" cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0)\n",
|
|||
|
"\n",
|
|||
|
" # Apply the rotary transformation\n",
|
|||
|
" x_rotated_0 = x1 * cos - x2 * sin\n",
|
|||
|
" x_rotated_1 = x1 * sin + x2 * cos\n",
|
|||
|
"\n",
|
|||
|
" # Interleave x_rotated_0 and x_rotated_1\n",
|
|||
|
" x_rotated = torch.stack((x_rotated_0, x_rotated_1), dim=-1)\n",
|
|||
|
" x_rotated = x_rotated.flatten(-2)\n",
|
|||
|
"\n",
|
|||
|
" return x_rotated.to(dtype=x.dtype)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "8e841b8e-75aa-49db-b1a7-d5c2116dc299",
|
|||
|
"metadata": {
|
|||
|
"id": "8e841b8e-75aa-49db-b1a7-d5c2116dc299"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The following is an example of applying RoPE to the `q` and `k` tensors:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"id": "8c89f022-7167-4001-8c21-8e012878733f",
|
|||
|
"metadata": {
|
|||
|
"id": "8c89f022-7167-4001-8c21-8e012878733f"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# Settings\n",
|
|||
|
"batch_size = 2\n",
|
|||
|
"context_len = 5\n",
|
|||
|
"num_heads = 4\n",
|
|||
|
"head_dim = 16\n",
|
|||
|
"\n",
|
|||
|
"# Instantiate RoPE parameters\n",
|
|||
|
"sin, cos = precompute_rope_params(head_dim=head_dim, context_length=context_len)\n",
|
|||
|
"\n",
|
|||
|
"# Dummy query and key tensors\n",
|
|||
|
"torch.manual_seed(123)\n",
|
|||
|
"queries = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
|
|||
|
"keys = torch.randn(batch_size, context_len, num_heads, head_dim)\n",
|
|||
|
"\n",
|
|||
|
"# Apply rotary position embeddings\n",
|
|||
|
"queries_rot = compute_rope(queries, sin, cos)\n",
|
|||
|
"keys_rot = compute_rope(keys, sin, cos)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "f78127b0-dda2-4c5a-98dd-bae8f5fe8297",
|
|||
|
"metadata": {
|
|||
|
"id": "f78127b0-dda2-4c5a-98dd-bae8f5fe8297"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Add RoPE to MultiHeadAttention module"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "RnmSHROLhhR3",
|
|||
|
"metadata": {
|
|||
|
"id": "RnmSHROLhhR3"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- It's important to note that GPT applies the positional embeddings to the inputs, whereas Llama applies rotations to the query and key vectors in the self-attention mechanism itself\n",
|
|||
|
"- Here, we modify the `MultiHeadAttention` class with the appropriate RoPE code\n",
|
|||
|
"- In addition, we remove the `qkv_bias` option and hardcode the `bias=False` setting\n",
|
|||
|
"- Also, we add a dtype setting to be able to instantiate the model with a lower precision later\n",
|
|||
|
" - Tip: since the `TransformerBlock's (in the next section) are repeated exactly, we could simplify the code and only initialize the buffers once instead for each `MultiHeadAttention` module; however, we add the precomputed RoPE parameters to the `MultiHeadAttention` class so that it can function as a standalone module"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"id": "d81a441e-0b79-4a8b-8291-ea7f55d58c84",
|
|||
|
"metadata": {
|
|||
|
"id": "d81a441e-0b79-4a8b-8291-ea7f55d58c84"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#####################################\n",
|
|||
|
"# Chapter 3\n",
|
|||
|
"#####################################\n",
|
|||
|
"class MultiHeadAttention(nn.Module):\n",
|
|||
|
" def __init__(self, d_in, d_out, context_length, num_heads, dtype=None): # ,dropout, num_heads, qkv_bias=False):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" assert d_out % num_heads == 0, \"d_out must be divisible by n_heads\"\n",
|
|||
|
"\n",
|
|||
|
" self.d_out = d_out\n",
|
|||
|
" self.num_heads = num_heads\n",
|
|||
|
" self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim\n",
|
|||
|
"\n",
|
|||
|
" ################################### NEW ###################################\n",
|
|||
|
" # Set bias=False and dtype=dtype for all linear layers below\n",
|
|||
|
" ###########################################################################\n",
|
|||
|
" self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
|
|||
|
" self.W_key = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
|
|||
|
" self.W_value = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
|
|||
|
" self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) # Linear layer to combine head outputs\n",
|
|||
|
" # self.dropout = nn.Dropout(dropout)\n",
|
|||
|
" self.register_buffer(\"mask\", torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
|
|||
|
"\n",
|
|||
|
" ################################### NEW ###################################\n",
|
|||
|
" sin, cos = precompute_rope_params(head_dim=self.head_dim, context_length=context_length)\n",
|
|||
|
" self.register_buffer(\"sin\", sin)\n",
|
|||
|
" self.register_buffer(\"cos\", cos)\n",
|
|||
|
" ###########################################################################\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
"\n",
|
|||
|
" b, num_tokens, d_in = x.shape\n",
|
|||
|
"\n",
|
|||
|
" keys = self.W_key(x) # Shape: (b, num_tokens, d_out)\n",
|
|||
|
" queries = self.W_query(x)\n",
|
|||
|
" values = self.W_value(x)\n",
|
|||
|
"\n",
|
|||
|
" # We implicitly split the matrix by adding a `num_heads` dimension\n",
|
|||
|
" # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)\n",
|
|||
|
" keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
|||
|
" values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
|||
|
" queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
|
|||
|
"\n",
|
|||
|
" # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)\n",
|
|||
|
" keys = keys.transpose(1, 2)\n",
|
|||
|
" queries = queries.transpose(1, 2)\n",
|
|||
|
" values = values.transpose(1, 2)\n",
|
|||
|
"\n",
|
|||
|
" ################################### NEW ###################################\n",
|
|||
|
" keys = compute_rope(keys, self.sin, self.cos)\n",
|
|||
|
" queries = compute_rope(queries, self.sin, self.cos)\n",
|
|||
|
" ###########################################################################\n",
|
|||
|
"\n",
|
|||
|
" # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
|
|||
|
" attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head\n",
|
|||
|
"\n",
|
|||
|
" # Original mask truncated to the number of tokens and converted to boolean\n",
|
|||
|
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
|
|||
|
"\n",
|
|||
|
" # Use the mask to fill attention scores\n",
|
|||
|
" attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
|
|||
|
"\n",
|
|||
|
" attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
|
|||
|
" # attn_weights = self.dropout(attn_weights)\n",
|
|||
|
"\n",
|
|||
|
" # Shape: (b, num_tokens, num_heads, head_dim)\n",
|
|||
|
" context_vec = (attn_weights @ values).transpose(1, 2)\n",
|
|||
|
"\n",
|
|||
|
" # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
|
|||
|
" context_vec = context_vec.reshape(b, num_tokens, self.d_out)\n",
|
|||
|
" context_vec = self.out_proj(context_vec) # optional projection\n",
|
|||
|
"\n",
|
|||
|
" return context_vec"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "-lt9SfnVioB3",
|
|||
|
"metadata": {
|
|||
|
"id": "-lt9SfnVioB3"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Below is an example using the `MultiHeadAttention` module on an example input:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"id": "03f15755-0083-483f-963b-99b599651638",
|
|||
|
"metadata": {
|
|||
|
"id": "03f15755-0083-483f-963b-99b599651638"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# Settings\n",
|
|||
|
"batch_size = 1\n",
|
|||
|
"context_len = 100\n",
|
|||
|
"max_context_len = 4096\n",
|
|||
|
"embed_dim = 128\n",
|
|||
|
"num_heads = 4\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"example_batch = torch.randn((batch_size, context_len, embed_dim))\n",
|
|||
|
"\n",
|
|||
|
"mha = MultiHeadAttention(\n",
|
|||
|
" d_in=embed_dim,\n",
|
|||
|
" d_out=embed_dim,\n",
|
|||
|
" context_length=max_context_len,\n",
|
|||
|
" num_heads=num_heads\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"mha(example_batch)\n",
|
|||
|
"\n",
|
|||
|
"del mha # delete to safe memory"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "e5a1a272-a038-4b8f-aaaa-f4b241e7f23f",
|
|||
|
"metadata": {
|
|||
|
"id": "e5a1a272-a038-4b8f-aaaa-f4b241e7f23f"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Update the TransformerBlock module"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "255f70ac-9c2e-4328-8af7-1c298b8d4a18",
|
|||
|
"metadata": {
|
|||
|
"id": "255f70ac-9c2e-4328-8af7-1c298b8d4a18"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- At this stage, most of the hard work is already done; we can now update the `TransformerBlock` to use the code we implemented above\n",
|
|||
|
"- This means we\n",
|
|||
|
" - replace LayerNorm with RMSNorm\n",
|
|||
|
" - remove dropout\n",
|
|||
|
" - remove the `qkv_bias` setting\n",
|
|||
|
" - add the `dtype` setting"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"id": "2e110721-bf2b-42b3-989a-1635b1658af0",
|
|||
|
"metadata": {
|
|||
|
"id": "2e110721-bf2b-42b3-989a-1635b1658af0"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class TransformerBlock(nn.Module):\n",
|
|||
|
" def __init__(self, cfg):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" self.att = MultiHeadAttention(\n",
|
|||
|
" d_in=cfg[\"emb_dim\"],\n",
|
|||
|
" d_out=cfg[\"emb_dim\"],\n",
|
|||
|
" context_length=cfg[\"context_length\"],\n",
|
|||
|
" num_heads=cfg[\"n_heads\"],\n",
|
|||
|
" dtype=cfg[\"dtype\"] # NEW\n",
|
|||
|
" # dropout=cfg[\"drop_rate\"],\n",
|
|||
|
" # qkv_bias=cfg[\"qkv_bias\"]\n",
|
|||
|
" )\n",
|
|||
|
" self.ff = FeedForward(cfg)\n",
|
|||
|
"\n",
|
|||
|
" ################################### NEW ###################################\n",
|
|||
|
" # self.norm1 = LayerNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" # self.norm2 = LayerNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" self.norm1 = RMSNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" self.norm2 = RMSNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" ###########################################################################\n",
|
|||
|
"\n",
|
|||
|
" # self.drop_shortcut = nn.Dropout(cfg[\"drop_rate\"])\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, x):\n",
|
|||
|
" # Shortcut connection for attention block\n",
|
|||
|
" shortcut = x\n",
|
|||
|
" x = self.norm1(x)\n",
|
|||
|
" x = self.att(x) # Shape [batch_size, num_tokens, emb_size]\n",
|
|||
|
" # x = self.drop_shortcut(x)\n",
|
|||
|
" x = x + shortcut # Add the original input back\n",
|
|||
|
"\n",
|
|||
|
" # Shortcut connection for feed-forward block\n",
|
|||
|
" shortcut = x\n",
|
|||
|
" x = self.norm2(x)\n",
|
|||
|
" x = self.ff(x)\n",
|
|||
|
" # x = self.drop_shortcut(x)\n",
|
|||
|
" x = x + shortcut # Add the original input back\n",
|
|||
|
"\n",
|
|||
|
" return x"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "ada953bc-e2c0-4432-a32d-3f7efa3f6e0f",
|
|||
|
"metadata": {
|
|||
|
"id": "ada953bc-e2c0-4432-a32d-3f7efa3f6e0f"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Update the model class"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "raw",
|
|||
|
"id": "aa79780d-74a8-4ee0-934a-9ad63205a02e",
|
|||
|
"metadata": {
|
|||
|
"id": "aa79780d-74a8-4ee0-934a-9ad63205a02e"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- As you may recall from [chapter 5](../01_main-chapter-code/ch05.ipynb), the `TransformerBlock` is a repeated block within the main model\n",
|
|||
|
"- Our Llama model is almost complete; we just have to update the model code surrounding the `TransformerBlock`\n",
|
|||
|
"- This means we\n",
|
|||
|
" - remove absolute positional embeddings since we have RoPE embeddings now\n",
|
|||
|
" - replace LayerNorm with RMSNorm\n",
|
|||
|
" - remove dropout\n",
|
|||
|
" - add the dtype setting"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"id": "cf8240fe-5d7f-4e7e-b1ac-e0755aab5e79",
|
|||
|
"metadata": {
|
|||
|
"id": "cf8240fe-5d7f-4e7e-b1ac-e0755aab5e79"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# class GPTModel(nn.Module):\n",
|
|||
|
"class Llama2Model(nn.Module):\n",
|
|||
|
" def __init__(self, cfg):\n",
|
|||
|
" super().__init__()\n",
|
|||
|
" self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"])\n",
|
|||
|
" # self.pos_emb = nn.Embedding(cfg[\"context_length\"], cfg[\"emb_dim\"])\n",
|
|||
|
" # self.drop_emb = nn.Dropout(cfg[\"drop_rate\"])\n",
|
|||
|
"\n",
|
|||
|
" self.trf_blocks = nn.Sequential(\n",
|
|||
|
" *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n",
|
|||
|
"\n",
|
|||
|
" ################################### NEW ###################################\n",
|
|||
|
" # self.final_norm = LayerNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" self.final_norm = RMSNorm(cfg[\"emb_dim\"])\n",
|
|||
|
" ###########################################################################\n",
|
|||
|
" self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
|
|||
|
"\n",
|
|||
|
" def forward(self, in_idx):\n",
|
|||
|
" batch_size, seq_len = in_idx.shape\n",
|
|||
|
" tok_embeds = self.tok_emb(in_idx)\n",
|
|||
|
" # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))\n",
|
|||
|
" x = tok_embeds # + pos_embeds # Shape [batch_size, num_tokens, emb_size]\n",
|
|||
|
" # x = self.drop_emb(x)\n",
|
|||
|
" x = self.trf_blocks(x)\n",
|
|||
|
" x = self.final_norm(x)\n",
|
|||
|
" logits = self.out_head(x)\n",
|
|||
|
" return logits"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60",
|
|||
|
"metadata": {
|
|||
|
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Initialize model"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "bG--zY-Ljj1f",
|
|||
|
"metadata": {
|
|||
|
"id": "bG--zY-Ljj1f"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The model code is now complete, and we are ready to initialize it\n",
|
|||
|
"- In [chapter 5](../01_main-chapter-code/ch05.ipynb), we used the following config file to specify the 124M-parameter GPT model:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"id": "4b7428df-3d02-4ccd-97b5-a629bdabbe8f",
|
|||
|
"metadata": {
|
|||
|
"id": "4b7428df-3d02-4ccd-97b5-a629bdabbe8f"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"GPT_CONFIG_124M = {\n",
|
|||
|
" \"vocab_size\": 50257, # Vocabulary size\n",
|
|||
|
" \"context_length\": 1024, # Context length\n",
|
|||
|
" \"emb_dim\": 768, # Embedding dimension\n",
|
|||
|
" \"n_heads\": 12, # Number of attention heads\n",
|
|||
|
" \"n_layers\": 12, # Number of layers\n",
|
|||
|
" \"drop_rate\": 0.1, # Dropout rate\n",
|
|||
|
" \"qkv_bias\": False # Query-Key-Value bias\n",
|
|||
|
"}"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "8bVi8uiBjw2T",
|
|||
|
"metadata": {
|
|||
|
"id": "8bVi8uiBjw2T"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- For reference, the 1.5B parameter GPT model config is shown below as well:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"id": "tAOojV_mkEnd",
|
|||
|
"metadata": {
|
|||
|
"id": "tAOojV_mkEnd"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"GPT_CONFIG_1558M = {\n",
|
|||
|
" \"vocab_size\": 50257, # Vocabulary size\n",
|
|||
|
" \"context_length\": 1024, # Context length\n",
|
|||
|
" \"emb_dim\": 1600, # Embedding dimension\n",
|
|||
|
" \"n_heads\": 25, # Number of attention heads\n",
|
|||
|
" \"n_layers\": 48, # Number of layers\n",
|
|||
|
" \"drop_rate\": 0.1, # Dropout rate\n",
|
|||
|
" \"qkv_bias\": False # Query-Key-Value bias\n",
|
|||
|
"}"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "HoGGRAGykQTE",
|
|||
|
"metadata": {
|
|||
|
"id": "HoGGRAGykQTE"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Similarly, we can define a Llama 2 config file for the 7B model (we ignore the other larger models for simplicity here):"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18",
|
|||
|
"metadata": {
|
|||
|
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"LLAMA2_CONFIG_7B = {\n",
|
|||
|
" \"vocab_size\": 32000, # Vocabulary size\n",
|
|||
|
" \"context_length\": 4096, # Context length\n",
|
|||
|
" \"emb_dim\": 4096, # Embedding dimension\n",
|
|||
|
" \"n_heads\": 32, # Number of attention heads\n",
|
|||
|
" \"n_layers\": 32, # Number of layers\n",
|
|||
|
" \"hidden_dim\": 11008, # NEW: Size of the intermediate dimension in FeedForward\n",
|
|||
|
" \"dtype\": torch.bfloat16 # NEW: Lower-precision dtype to save memory\n",
|
|||
|
"}"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "FAP7fiBzkaBz",
|
|||
|
"metadata": {
|
|||
|
"id": "FAP7fiBzkaBz"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Using these settings, we can now initialize a Llama 2 7B model (note that this requires ~26 GB of memory)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"id": "7004d785-ac9a-4df5-8760-6807fc604686",
|
|||
|
"metadata": {
|
|||
|
"id": "7004d785-ac9a-4df5-8760-6807fc604686"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"model = Llama2Model(LLAMA2_CONFIG_7B)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
|
|||
|
"outputId": "78ab929e-ac78-4b16-ddb1-704d45ee69a8"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Total number of parameters: 6,738,415,616\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"total_params = sum(p.numel() for p in model.parameters())\n",
|
|||
|
"print(f\"Total number of parameters: {total_params:,}\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "Bx14NtzWk2wj",
|
|||
|
"metadata": {
|
|||
|
"id": "Bx14NtzWk2wj"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- As shown above, the model contains 6.7 billion parameters (commonly rounded and referred to as a 7B model)\n",
|
|||
|
"- Additionally, we can calculate the memory requirements for this model using the code below:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
|
|||
|
"outputId": "c0cbdcc8-dc46-44f7-a800-fbe888a3f9e9"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"float32 (PyTorch default): 52.27 GB\n",
|
|||
|
"bfloat16: 26.13 GB\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"def model_memory_size(model, input_dtype=torch.float32):\n",
|
|||
|
" total_params = 0\n",
|
|||
|
" total_grads = 0\n",
|
|||
|
" for param in model.parameters():\n",
|
|||
|
" # Calculate total number of elements per parameter\n",
|
|||
|
" param_size = param.numel()\n",
|
|||
|
" total_params += param_size\n",
|
|||
|
" # Check if gradients are stored for this parameter\n",
|
|||
|
" if param.requires_grad:\n",
|
|||
|
" total_grads += param_size\n",
|
|||
|
"\n",
|
|||
|
" # Calculate buffer size (non-parameters that require memory)\n",
|
|||
|
" total_buffers = sum(buf.numel() for buf in model.buffers())\n",
|
|||
|
"\n",
|
|||
|
" # Size in bytes = (Number of elements) * (Size of each element in bytes)\n",
|
|||
|
" # We assume parameters and gradients are stored in the same type as input dtype\n",
|
|||
|
" element_size = torch.tensor(0, dtype=input_dtype).element_size()\n",
|
|||
|
" total_memory_bytes = (total_params + total_grads + total_buffers) * element_size\n",
|
|||
|
"\n",
|
|||
|
" # Convert bytes to gigabytes\n",
|
|||
|
" total_memory_gb = total_memory_bytes / (1024**3)\n",
|
|||
|
"\n",
|
|||
|
" return total_memory_gb\n",
|
|||
|
"\n",
|
|||
|
"print(f\"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB\")\n",
|
|||
|
"print(f\"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "zudd-5PulKFL",
|
|||
|
"metadata": {
|
|||
|
"id": "zudd-5PulKFL"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Lastly, we can also transfer the model to an NVIDIA or Apple Silicon GPU if applicable:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d",
|
|||
|
"metadata": {
|
|||
|
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"if torch.cuda.is_available():\n",
|
|||
|
" device = torch.device(\"cuda\")\n",
|
|||
|
"elif torch.backends.mps.is_available():\n",
|
|||
|
" device = torch.device(\"mps\")\n",
|
|||
|
"else:\n",
|
|||
|
" device = torch.device(\"cpu\")\n",
|
|||
|
"\n",
|
|||
|
"model.to(device);"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34",
|
|||
|
"metadata": {
|
|||
|
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Load tokenizer"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005",
|
|||
|
"metadata": {
|
|||
|
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- In this section, we are going to load the tokenizer for the model\n",
|
|||
|
"- Llama 2 uses Google's [SentencePiece](https://github.com/google/sentencepiece) tokenizer instead of OpenAI's [Tiktoken](https://github.com/openai/tiktoken) (but Llama 3 uses Tiktoken)\n",
|
|||
|
"- Meta AI shared the original Llama 2 model weights and tokenizer vocabulary on the Hugging Face Hub\n",
|
|||
|
"- We will download the tokenizer vocabulary from the Hub and load it into SentencePiece\n",
|
|||
|
"- Uncomment and run the following code to install the required libraries:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"id": "768989ea-dc60-4dc8-ae84-cbb3fd224422",
|
|||
|
"metadata": {
|
|||
|
"id": "768989ea-dc60-4dc8-ae84-cbb3fd224422"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# !pip install huggingface_hub sentencepiece"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "KbnlzsbYmJU6",
|
|||
|
"metadata": {
|
|||
|
"id": "KbnlzsbYmJU6"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Please note that Meta AI requires that you accept the Llama 2 licensing terms before you can download the files; to do this, you have to create a Hugging Face Hub account and visit the [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) repository to accept the terms\n",
|
|||
|
"- Next, you will need to create an access token; to generate an access token, click on the profile picture in the upper right and click on \"Settings\"\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/settings.webp?1\" width=\"300px\">\n",
|
|||
|
"\n",
|
|||
|
"- Then, create and copy the access token so you can copy & paste it into the next code cell\n",
|
|||
|
"\n",
|
|||
|
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/access-token.webp?1\" width=\"600px\">"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"id": "3357a230-b678-4691-a238-257ee4e80185",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "3357a230-b678-4691-a238-257ee4e80185",
|
|||
|
"outputId": "d326d32c-fa8d-4f2b-84d5-a1b8f35dd387"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
|
|||
|
"Token is valid (permission: read).\n",
|
|||
|
"Your token has been saved to /root/.cache/huggingface/token\n",
|
|||
|
"Login successful\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from huggingface_hub import login\n",
|
|||
|
"\n",
|
|||
|
"login(token=\"hf_...\") # Insert your token here"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "IxGh6ZYQo0VN",
|
|||
|
"metadata": {
|
|||
|
"id": "IxGh6ZYQo0VN"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- After login via the access token, which is necessary to verify that we accepted the Llama 2 licensing terms, we can now download the tokenizer vocabulary:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 23,
|
|||
|
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
|
|||
|
"outputId": "82bc5037-c86c-46c2-b374-269f9d09599a"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
|
|||
|
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
|
|||
|
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
|
|||
|
"You will be able to reuse this secret in all of your notebooks.\n",
|
|||
|
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
|
|||
|
" warnings.warn(\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from huggingface_hub import hf_hub_download\n",
|
|||
|
"\n",
|
|||
|
"tokenizer_file = hf_hub_download(\n",
|
|||
|
" repo_id=\"meta-llama/Llama-2-7b\",\n",
|
|||
|
" filename=\"tokenizer.model\",\n",
|
|||
|
" cache_dir=\".\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "gp7iQ8cXAJLv",
|
|||
|
"metadata": {
|
|||
|
"id": "gp7iQ8cXAJLv"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- To provide a more familiar interface for the tokenizer, we define a small `LlamaTokenizer` wrapper class:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"id": "Ef4WxhjOBOOc",
|
|||
|
"metadata": {
|
|||
|
"id": "Ef4WxhjOBOOc"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import sentencepiece as spm\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"class LlamaTokenizer:\n",
|
|||
|
" def __init__(self, filepath):\n",
|
|||
|
" sp = spm.SentencePieceProcessor()\n",
|
|||
|
" sp.load(tokenizer_file)\n",
|
|||
|
" self.tokenizer = sp\n",
|
|||
|
"\n",
|
|||
|
" def encode(self, text):\n",
|
|||
|
" return self.tokenizer.encode_as_ids(text)\n",
|
|||
|
"\n",
|
|||
|
" def decode(self, ids):\n",
|
|||
|
" return self.tokenizer.decode_pieces(ids)\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"tokenizer = LlamaTokenizer(tokenizer_file)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "NVhmFeX3pT_M",
|
|||
|
"metadata": {
|
|||
|
"id": "NVhmFeX3pT_M"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- We can now use the `generate` function to have the Llama 2 model generate new text:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 25,
|
|||
|
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
|
|||
|
"outputId": "d733bc0a-5136-4c33-d70d-36056f1e8329"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Output text:\n",
|
|||
|
" Every effort movesαllRadius deletingpretccappedRadius zas Parte Material Ку términчной herousztusllRadiusotto кра liberotto siguientesagnost#{ (@topicquez restored log\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"torch.manual_seed(123)\n",
|
|||
|
"\n",
|
|||
|
"token_ids = generate(\n",
|
|||
|
" model=model,\n",
|
|||
|
" idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
|
|||
|
" max_new_tokens=30,\n",
|
|||
|
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
|
|||
|
" top_k=1,\n",
|
|||
|
" temperature=1.0\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "93WTtAA5paYV",
|
|||
|
"metadata": {
|
|||
|
"id": "93WTtAA5paYV"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Of course, as we can see above, the text is nonsensical since we haven't trained the Llama 2 model yet\n",
|
|||
|
"- In the next section, instead of training it ourselves, which would cost tens to hundreds of thousands of dollars, we load the pretrained weights from Meta AI"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8",
|
|||
|
"metadata": {
|
|||
|
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Load pretrained weights"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "aKeN7rUfqZMI",
|
|||
|
"metadata": {
|
|||
|
"id": "aKeN7rUfqZMI"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- We are loading the [\"meta-llama/Llama-2-7b\"](https://huggingface.co/meta-llama/Llama-2-7b) base model below, which is a simple text completion model before finetuning\n",
|
|||
|
"- Alternatively, you can load the instruction-finetuned and aligned [\"meta-llama/Llama-2-7b-chat\"](https://huggingface.co/meta-llama/Llama-2-7b-chat) model by modifying the string in the next code cell accordingly"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 26,
|
|||
|
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
|
|||
|
"metadata": {
|
|||
|
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"weights_file = hf_hub_download(\n",
|
|||
|
" repo_id=\"meta-llama/Llama-2-7b\",\n",
|
|||
|
" filename=\"consolidated.00.pth\",\n",
|
|||
|
" cache_dir=\".\"\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 27,
|
|||
|
"id": "e67cca5c-ba4b-4be5-85c7-fdceae8a5701",
|
|||
|
"metadata": {
|
|||
|
"id": "e67cca5c-ba4b-4be5-85c7-fdceae8a5701"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"weights = torch.load(weights_file, weights_only=True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "-15SJ7btq2zE",
|
|||
|
"metadata": {
|
|||
|
"id": "-15SJ7btq2zE"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The `weights` contains the following tensors (only the first 15 are shown for simplicity):"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 28,
|
|||
|
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
|
|||
|
"outputId": "01721809-ace1-4a7a-ab54-8fad2e8f54a6"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"['tok_embeddings.weight',\n",
|
|||
|
" 'norm.weight',\n",
|
|||
|
" 'output.weight',\n",
|
|||
|
" 'layers.0.attention.wq.weight',\n",
|
|||
|
" 'layers.0.attention.wk.weight',\n",
|
|||
|
" 'layers.0.attention.wv.weight',\n",
|
|||
|
" 'layers.0.attention.wo.weight',\n",
|
|||
|
" 'layers.0.feed_forward.w1.weight',\n",
|
|||
|
" 'layers.0.feed_forward.w2.weight',\n",
|
|||
|
" 'layers.0.feed_forward.w3.weight',\n",
|
|||
|
" 'layers.0.attention_norm.weight',\n",
|
|||
|
" 'layers.0.ffn_norm.weight',\n",
|
|||
|
" 'layers.1.attention.wq.weight',\n",
|
|||
|
" 'layers.1.attention.wk.weight',\n",
|
|||
|
" 'layers.1.attention.wv.weight']"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 28,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"list(weights.keys())[:15]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "UeeSpnunrDFB",
|
|||
|
"metadata": {
|
|||
|
"id": "UeeSpnunrDFB"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The following function, modeled after the `load_weights_into_gpt` function in [chapter 5](../01_main-chapter-code/ch05.ipynb), loads the pretrained weights into our Llama 2 model:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 29,
|
|||
|
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65",
|
|||
|
"metadata": {
|
|||
|
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def assign(left, right):\n",
|
|||
|
" if left.shape != right.shape:\n",
|
|||
|
" raise ValueError(f\"Shape mismatch. Left: {left.shape}, Right: {right.shape}\")\n",
|
|||
|
"\n",
|
|||
|
" if isinstance(right, torch.Tensor):\n",
|
|||
|
" return torch.nn.Parameter(right.clone().detach())\n",
|
|||
|
" else:\n",
|
|||
|
" return torch.nn.Parameter(torch.tensor(right))\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"def load_weights_into_llama(model, param_config, params):\n",
|
|||
|
" model.tok_emb.weight = assign(model.tok_emb.weight, params[\"tok_embeddings.weight\"])\n",
|
|||
|
"\n",
|
|||
|
" for l in range(param_config[\"n_layers\"]):\n",
|
|||
|
"\n",
|
|||
|
" # Load attention weights\n",
|
|||
|
" model.trf_blocks[l].att.W_query.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].att.W_query.weight,\n",
|
|||
|
" params[f\"layers.{l}.attention.wq.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].att.W_key.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].att.W_key.weight,\n",
|
|||
|
" params[f\"layers.{l}.attention.wk.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].att.W_value.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].att.W_value.weight,\n",
|
|||
|
" params[f\"layers.{l}.attention.wv.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].att.out_proj.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].att.out_proj.weight,\n",
|
|||
|
" params[f\"layers.{l}.attention.wo.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].norm1.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].norm1.weight,\n",
|
|||
|
" params[f\"layers.{l}.attention_norm.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
"\n",
|
|||
|
" # Load FeedForward weights\n",
|
|||
|
" model.trf_blocks[l].ff.fc1.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].ff.fc1.weight,\n",
|
|||
|
" params[f\"layers.{l}.feed_forward.w1.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" # For some reason w2 and w3 are provided in the wrong order in the weights file\n",
|
|||
|
" model.trf_blocks[l].ff.fc2.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].ff.fc2.weight,\n",
|
|||
|
" params[f\"layers.{l}.feed_forward.w3.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].ff.fc3.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].ff.fc3.weight,\n",
|
|||
|
" params[f\"layers.{l}.feed_forward.w2.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
" model.trf_blocks[l].norm2.weight = assign(\n",
|
|||
|
" model.trf_blocks[l].norm2.weight,\n",
|
|||
|
" params[f\"layers.{l}.ffn_norm.weight\"]\n",
|
|||
|
" )\n",
|
|||
|
"\n",
|
|||
|
" # Load output layer weights\n",
|
|||
|
" model.final_norm.weight = assign(model.final_norm.weight, params[\"norm.weight\"])\n",
|
|||
|
" model.out_head.weight = assign(model.out_head.weight, params[\"output.weight\"])\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"load_weights_into_llama(model, LLAMA2_CONFIG_7B, weights)\n",
|
|||
|
"model.to(device);"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "TDuv_Us2rNvk",
|
|||
|
"metadata": {
|
|||
|
"id": "TDuv_Us2rNvk"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Next, we are ready to use the model for text generation"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 30,
|
|||
|
"id": "240987e8-a023-462e-9376-9edfb27559ec",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "240987e8-a023-462e-9376-9edfb27559ec",
|
|||
|
"outputId": "59830005-42af-406b-c836-38a8f2d7b961"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Output text:\n",
|
|||
|
" Every effort has been made to ensure that the information contained in this website is accurate and up to date. However, the information is provided without any warranty\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"torch.manual_seed(123)\n",
|
|||
|
"\n",
|
|||
|
"token_ids = generate(\n",
|
|||
|
" model=model,\n",
|
|||
|
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
|
|||
|
" max_new_tokens=30,\n",
|
|||
|
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
|
|||
|
" top_k=1,\n",
|
|||
|
" temperature=0.\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"id": "akyo7WNyF_YL",
|
|||
|
"metadata": {
|
|||
|
"id": "akyo7WNyF_YL"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- Tip: as mentioned earlier, this is the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-2-7b-chat\"` model instead"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 35,
|
|||
|
"id": "nbvAV7vaz6yc",
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "nbvAV7vaz6yc",
|
|||
|
"outputId": "faa930dc-0db2-4095-b395-f97baef08903"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Output text:\n",
|
|||
|
" What do llamas eat?\n",
|
|||
|
"Llamas are herbivores, which means they eat plants. They eat grass, leaves, and hay.\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"del model # to free up memory\n",
|
|||
|
"\n",
|
|||
|
"weights_file = hf_hub_download(\n",
|
|||
|
" repo_id=\"meta-llama/Llama-2-7b-chat\",\n",
|
|||
|
" filename=\"consolidated.00.pth\",\n",
|
|||
|
" cache_dir=\".\"\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"model = Llama2Model(LLAMA2_CONFIG_7B)\n",
|
|||
|
"load_weights_into_llama(model, LLAMA2_CONFIG_7B, weights)\n",
|
|||
|
"model.to(device);\n",
|
|||
|
"\n",
|
|||
|
"torch.manual_seed(123)\n",
|
|||
|
"\n",
|
|||
|
"token_ids = generate(\n",
|
|||
|
" model=model,\n",
|
|||
|
" idx=text_to_token_ids(\"What do llamas eat?\", tokenizer).to(device),\n",
|
|||
|
" max_new_tokens=25,\n",
|
|||
|
" context_size=LLAMA2_CONFIG_7B[\"context_length\"],\n",
|
|||
|
" top_k=1,\n",
|
|||
|
" temperature=0.\n",
|
|||
|
")\n",
|
|||
|
"\n",
|
|||
|
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"accelerator": "GPU",
|
|||
|
"colab": {
|
|||
|
"gpuType": "A100",
|
|||
|
"provenance": []
|
|||
|
},
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.4"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 5
|
|||
|
}
|