55 lines
1.9 KiB
Python
Raw Normal View History

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from .utils import KVCache
import torch
def generate_text_simple(model, idx, max_new_tokens, context_size=None, use_cache=True):
model.eval()
ctx_len = context_size or model.cfg["context_length"]
with torch.no_grad():
if use_cache:
cache = KVCache(n_layers=model.cfg["n_layers"])
model.reset_kv_cache()
logits = model(idx[:, -ctx_len:], cache=cache)
for _ in range(max_new_tokens):
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
logits = model(next_idx, cache=cache)
else:
for _ in range(max_new_tokens):
logits = model(idx[:, -ctx_len:], cache=None)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
return idx
def generate_text_simple_stream(model, token_ids, max_new_tokens, eos_token_id=None, context_size=None):
model.eval()
with torch.no_grad():
cache = KVCache(n_layers=model.cfg["n_layers"])
model.reset_kv_cache()
# Prime the cache with the initial context
logits = model(token_ids, cache=cache)
for _ in range(max_new_tokens):
next_token = torch.argmax(logits[:, -1], dim=-1, keepdim=True)
if eos_token_id is not None and torch.all(next_token == eos_token_id):
break
yield next_token
token_ids = torch.cat([token_ids, next_token], dim=1)
# Feed only the new token to the model; cache handles history
logits = model(next_token, cache=cache)