2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "1545a16b-bc8d-4e49-b9a6-db6631e7483d",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<table style=\"width:100%\">\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<tr>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<td style=\"vertical-align:middle; text-align:left;\">\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<font size=\"2\">\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</font>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</td>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<td style=\"vertical-align:middle; text-align:left;\">\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</td>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</tr>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</table>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "f3f83194-82b9-4478-9550-5ad793467bd0",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Load And Use Finetuned Model"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "466b564e-4fd5-4d76-a3a1-63f9f0993b7e",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "This notebook contains minimal code to load the finetuned model that was instruction finetuned and saved in chapter 7 via [ch07.ipynb](ch07.ipynb)."
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "fd80e5f5-0f79-4a6c-bf31-2026e7d30e52",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "tiktoken version: 0.7.0\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-07-24 21:53:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "torch version: 2.4.0\n"
							 
						 
					
						
							
								
									
										
										
										
											2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from importlib.metadata import version\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pkgs = [\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"tiktoken\",    # Tokenizer\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"torch\",       # Deep learning library\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "for p in pkgs:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    print(f\"{p} version: {version(p)}\")"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "ed86d6b7-f32d-4601-b585-a2ea3dbf7201",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from pathlib import Path\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "finetuned_model_path = Path(\"gpt2-medium355M-sft.pth\")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "if not finetuned_model_path.exists():\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    print(\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        f\"Could not find '{finetuned_model_path}'.\\n\"\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-07-09 06:43:26 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        \"Run the `ch07.ipynb` notebook to finetune and save the finetuned model.\"\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    )"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "fb02584a-5e31-45d5-8377-794876907bc6",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2024-06-23 01:12:01 +02:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "from previous_chapters import GPTModel\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "BASE_CONFIG = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"vocab_size\": 50257,     # Vocabulary size\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"context_length\": 1024,  # Context length\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"drop_rate\": 0.0,        # Dropout rate\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"qkv_bias\": True         # Query-key-value bias\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "model_configs = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "CHOOSE_MODEL = \"gpt2-medium (355M)\"\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "model_size = CHOOSE_MODEL.split(\" \")[-1].lstrip(\"(\").rstrip(\")\")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "model = GPTModel(BASE_CONFIG)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "f1ccf2b7-176e-4cfd-af7a-53fb76010b94",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import torch\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-07-24 21:53:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "model.load_state_dict(torch.load(\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"gpt2-medium355M-sft.pth\",\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    map_location=torch.device(\"cpu\"),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    weights_only=True\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "))\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "model.eval();"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "a1fd174e-9555-46c5-8780-19b0aa4f26e5",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import tiktoken\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tokenizer = tiktoken.get_encoding(\"gpt2\")"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "2a4c0129-efe5-46e9-bb90-ba08d407c1a2",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "prompt = \"\"\"Below is an instruction that describes a task. Write a response \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "that appropriately completes the request.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Instruction:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Convert the active sentence to passive: 'The chef cooks the meal every day.'\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\"\"\""
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "1e26862c-10b5-4a0f-9dd6-b6ddbad2fc3f",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "The meal is cooked every day by the chef.\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from previous_chapters import (\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    generate,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    text_to_token_ids,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    token_ids_to_text\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    ")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "def extract_response(response_text, input_text):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    return response_text[len(input_text):].replace(\"### Response:\", \"\").strip()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "torch.manual_seed(123)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "token_ids = generate(\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    model=model,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    idx=text_to_token_ids(prompt, tokenizer),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    max_new_tokens=35,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    context_size=BASE_CONFIG[\"context_length\"],\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    eos_id=50256\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    ")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "response = token_ids_to_text(token_ids, tokenizer)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "response = extract_response(response, prompt)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print(response)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "display_name": "Python 3 (ipykernel)",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "language": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2024-07-24 21:53:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.11.4"
							 
						 
					
						
							
								
									
										
										
										
											2024-06-19 20:21:14 -05:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 5
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								}