| 
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os | 
					
						
							| 
									
										
										
										
											2024-07-19 06:29:29 -07:00
										 |  |  | import urllib.request | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # import requests | 
					
						
							| 
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 |  |  | import json | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import tensorflow as tf | 
					
						
							|  |  |  | from tqdm import tqdm | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_and_load_gpt2(model_size, models_dir): | 
					
						
							|  |  |  |     # Validate model size | 
					
						
							|  |  |  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | 
					
						
							|  |  |  |     if model_size not in allowed_sizes: | 
					
						
							|  |  |  |         raise ValueError(f"Model size not in {allowed_sizes}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Define paths | 
					
						
							|  |  |  |     model_dir = os.path.join(models_dir, model_size) | 
					
						
							|  |  |  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | 
					
						
							|  |  |  |     filenames = [ | 
					
						
							|  |  |  |         "checkpoint", "encoder.json", "hparams.json", | 
					
						
							|  |  |  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | 
					
						
							|  |  |  |         "model.ckpt.meta", "vocab.bpe" | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Download files | 
					
						
							|  |  |  |     os.makedirs(model_dir, exist_ok=True) | 
					
						
							|  |  |  |     for filename in filenames: | 
					
						
							|  |  |  |         file_url = os.path.join(base_url, model_size, filename) | 
					
						
							|  |  |  |         file_path = os.path.join(model_dir, filename) | 
					
						
							|  |  |  |         download_file(file_url, file_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Load settings and params | 
					
						
							|  |  |  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | 
					
						
							|  |  |  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | 
					
						
							|  |  |  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return settings, params | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-07-19 06:29:29 -07:00
										 |  |  | def download_file(url, destination): | 
					
						
							|  |  |  |     # Send a GET request to download the file | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     try: | 
					
						
							|  |  |  |         with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |             # Get the total file size from headers, defaulting to 0 if not present | 
					
						
							|  |  |  |             file_size = int(response.headers.get("Content-Length", 0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Check if file exists and has the same size | 
					
						
							|  |  |  |             if os.path.exists(destination): | 
					
						
							|  |  |  |                 file_size_local = os.path.getsize(destination) | 
					
						
							|  |  |  |                 if file_size == file_size_local: | 
					
						
							|  |  |  |                     print(f"File already exists and is up-to-date: {destination}") | 
					
						
							|  |  |  |                     return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Define the block size for reading the file | 
					
						
							|  |  |  |             block_size = 1024  # 1 Kilobyte | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Initialize the progress bar with total file size | 
					
						
							|  |  |  |             progress_bar_description = os.path.basename(url)  # Extract filename from URL | 
					
						
							|  |  |  |             with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | 
					
						
							|  |  |  |                 # Open the destination file in binary write mode | 
					
						
							|  |  |  |                 with open(destination, "wb") as file: | 
					
						
							|  |  |  |                     # Read the file in chunks and write to destination | 
					
						
							|  |  |  |                     while True: | 
					
						
							|  |  |  |                         chunk = response.read(block_size) | 
					
						
							|  |  |  |                         if not chunk: | 
					
						
							|  |  |  |                             break | 
					
						
							|  |  |  |                         file.write(chunk) | 
					
						
							|  |  |  |                         progress_bar.update(len(chunk))  # Update progress bar | 
					
						
							|  |  |  |     except urllib.error.HTTPError: | 
					
						
							|  |  |  |         s = ( | 
					
						
							|  |  |  |             f"The specified URL ({url}) is incorrect, the internet connection cannot be established," | 
					
						
							|  |  |  |             "\nor the requested file is temporarily unavailable.\nPlease visit the following website" | 
					
						
							|  |  |  |             " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273") | 
					
						
							|  |  |  |         print(s) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Alternative way using `requests` | 
					
						
							|  |  |  | """
 | 
					
						
							| 
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 |  |  | def download_file(url, destination): | 
					
						
							|  |  |  |     # Send a GET request to download the file in streaming mode | 
					
						
							|  |  |  |     response = requests.get(url, stream=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Get the total file size from headers, defaulting to 0 if not present | 
					
						
							|  |  |  |     file_size = int(response.headers.get("content-length", 0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Check if file exists and has the same size | 
					
						
							|  |  |  |     if os.path.exists(destination): | 
					
						
							|  |  |  |         file_size_local = os.path.getsize(destination) | 
					
						
							|  |  |  |         if file_size == file_size_local: | 
					
						
							|  |  |  |             print(f"File already exists and is up-to-date: {destination}") | 
					
						
							|  |  |  |             return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Define the block size for reading the file | 
					
						
							|  |  |  |     block_size = 1024  # 1 Kilobyte | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Initialize the progress bar with total file size | 
					
						
							|  |  |  |     progress_bar_description = url.split("/")[-1]  # Extract filename from URL | 
					
						
							|  |  |  |     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | 
					
						
							|  |  |  |         # Open the destination file in binary write mode | 
					
						
							|  |  |  |         with open(destination, "wb") as file: | 
					
						
							|  |  |  |             # Iterate over the file data in chunks | 
					
						
							|  |  |  |             for chunk in response.iter_content(block_size): | 
					
						
							|  |  |  |                 progress_bar.update(len(chunk))  # Update progress bar | 
					
						
							|  |  |  |                 file.write(chunk)  # Write the chunk to the file | 
					
						
							| 
									
										
										
										
											2024-07-19 06:29:29 -07:00
										 |  |  | """
 | 
					
						
							| 
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | 
					
						
							|  |  |  |     # Initialize parameters dictionary with empty blocks for each layer | 
					
						
							|  |  |  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Iterate over each variable in the checkpoint | 
					
						
							|  |  |  |     for name, _ in tf.train.list_variables(ckpt_path): | 
					
						
							|  |  |  |         # Load the variable and remove singleton dimensions | 
					
						
							|  |  |  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Process the variable name to extract relevant parts | 
					
						
							|  |  |  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Identify the target dictionary for the variable | 
					
						
							|  |  |  |         target_dict = params | 
					
						
							|  |  |  |         if variable_name_parts[0].startswith("h"): | 
					
						
							|  |  |  |             layer_number = int(variable_name_parts[0][1:]) | 
					
						
							|  |  |  |             target_dict = params["blocks"][layer_number] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Recursively access or create nested dictionaries | 
					
						
							|  |  |  |         for key in variable_name_parts[1:-1]: | 
					
						
							|  |  |  |             target_dict = target_dict.setdefault(key, {}) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Assign the variable array to the last key | 
					
						
							|  |  |  |         last_key = variable_name_parts[-1] | 
					
						
							|  |  |  |         target_dict[last_key] = variable_array | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return params |