LLMs-from-scratch/ch02/01_main-chapter-code/exercise-solutions.ipynb

329 lines
7.2 KiB
Plaintext
Raw Normal View History

2023-10-27 06:19:40 -05:00
{
"cells": [
{
"cell_type": "markdown",
"id": "ab88d307-61ba-45ef-89bc-e3569443dfca",
"metadata": {},
"source": [
"# Chapter 2 Exercise solutions"
]
},
{
"cell_type": "markdown",
"id": "6f678e62-7bcb-4405-86ae-dce94f494303",
"metadata": {},
"source": [
"# Exercise 2.1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7614337f-f639-42c9-a99b-d33f74fa8a03",
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"\n",
"tokenizer = tiktoken.get_encoding(\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[33901]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\"Ak\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d3664332-e6bb-447e-8b96-203aafde8b24",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[86]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\"w\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2773c09d-c136-4372-a2be-04b58d292842",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[343]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\"ir\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8a6abd32-1e0a-4038-9dd2-673f47bcdeb5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[86]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\"w\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "26ae940a-9841-4e27-a1df-b83fc8a488b3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[220]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\" \")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a606c39a-6747-4cd8-bb38-e3183f80908d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[959]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.encode(\"ier\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "47c7268d-8fdc-4957-bc68-5be6113f45a7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Akwirw ier'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.decode([33901, 86, 343, 86, 220, 959])"
]
},
{
"cell_type": "markdown",
"id": "29e5034a-95ed-46d8-9972-589354dc9fd4",
"metadata": {},
"source": [
"# Exercise 2.2"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "4d50af16-937b-49e0-8ffd-42d30cbb41c9",
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"import torch\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.tokenizer = tokenizer\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = tokenizer.encode(txt)\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",
" input_chunk = token_ids[i:i + max_length]\n",
" target_chunk = token_ids[i + 1: i + max_length + 1]\n",
" self.input_ids.append(torch.tensor(input_chunk))\n",
" self.target_ids.append(torch.tensor(target_chunk))\n",
"\n",
" def __len__(self):\n",
" return len(self.input_ids)\n",
"\n",
" def __getitem__(self, idx):\n",
" return self.input_ids[idx], self.target_ids[idx]\n",
"\n",
"\n",
"def create_dataloader(txt, batch_size=4, max_length=256, stride=128):\n",
" # Initialize the tokenizer\n",
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
"\n",
" # Create dataset\n",
" dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
"\n",
" # Create dataloader\n",
" dataloader = DataLoader(dataset, batch_size=batch_size)\n",
"\n",
" return dataloader\n",
"\n",
"\n",
"with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
" raw_text = f.read()\n",
"\n",
"tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
"encoded_text = tokenizer.encode(raw_text)\n",
"\n",
"vocab_size = 50257\n",
"output_dim = 256\n",
"token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
"pos_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0128eefa-d7c8-4f76-9851-566dfa7c3745",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 40, 367],\n",
" [2885, 1464],\n",
" [1807, 3619],\n",
" [ 402, 271]])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataloader = create_dataloader(raw_text, batch_size=4, max_length=2, stride=2)\n",
"\n",
"for batch in dataloader:\n",
" x, y = batch\n",
" break\n",
"\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "ff5c1e90-c6de-4a87-adf6-7e19f603291c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 40, 367, 2885, 1464, 1807, 3619, 402, 271],\n",
" [ 2885, 1464, 1807, 3619, 402, 271, 10899, 2138],\n",
" [ 1807, 3619, 402, 271, 10899, 2138, 257, 7026],\n",
" [ 402, 271, 10899, 2138, 257, 7026, 15632, 438]])"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataloader = create_dataloader(raw_text, batch_size=4, max_length=8, stride=2)\n",
"\n",
"for batch in dataloader:\n",
" x, y = batch\n",
" break\n",
"\n",
"x"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}