115 lines
3.9 KiB
Python
Raw Normal View History

import io
import os
import sys
import types
import nbformat
import torch
import pytest
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
@pytest.fixture(scope="module")
def notebook():
def import_definitions_from_notebook(fullname, names):
# Get the directory of the current test file
current_dir = os.path.dirname(__file__)
path = os.path.join(current_dir, "..", fullname + ".ipynb")
path = os.path.normpath(path)
# Load the notebook
if not os.path.exists(path):
raise FileNotFoundError(f"Notebook file not found at: {path}")
with io.open(path, "r", encoding="utf-8") as f:
nb = nbformat.read(f, as_version=4)
# Create a module to store the imported functions and classes
mod = types.ModuleType(fullname)
sys.modules[fullname] = mod
# Go through the notebook cells and only execute function or class definitions
for cell in nb.cells:
if cell.cell_type == "code":
cell_code = cell.source
for name in names:
# Check for function or class definitions
if f"def {name}" in cell_code or f"class {name}" in cell_code:
exec(cell_code, mod.__dict__)
return mod
# Specify the notebook name and functions/classes to import
fullname = "converting-gpt-to-llama2"
names = ["precompute_rope_params", "compute_rope", "SiLU", "RMSNorm"]
# Import the required functions and classes from the notebook
return import_definitions_from_notebook(fullname, names)
@pytest.fixture(autouse=True)
def set_seed():
torch.manual_seed(123)
def test_rope(notebook):
# Settings
batch_size = 1
context_len = 5
num_heads = 4
head_dim = 16
# Instantiate RoPE parameters
cos, sin = notebook.precompute_rope_params(head_dim=head_dim, context_length=context_len)
# Dummy query and key tensors
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = notebook.compute_rope(queries, cos, sin)
keys_rot = notebook.compute_rope(keys, cos, sin)
class RoPEConfig:
rope_type = "default"
rope_scaling = None
factor = 1.0
dim: int = head_dim
rope_theta = 10000
max_position_embeddings: int = 4096
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
def test_silu(notebook):
example_batch = torch.randn(2, 3, 4)
silu = notebook.SiLU()
assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))
@pytest.mark.skipif(torch.__version__ < "2.4", reason="Requires PyTorch 2.4 or newer")
def test_rmsnorm(notebook):
example_batch = torch.randn(2, 3, 4)
rms_norm = notebook.RMSNorm(emb_dim=example_batch.shape[-1])
rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-6)
assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))