2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Source for "Build a Large Language Model From Scratch"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Code: https://github.com/rasbt/LLMs-from-scratch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import argparse
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 20:11:56 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import math
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import os
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from pathlib import Path
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import urllib.request
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import zipfile
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import pandas as pd
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import tiktoken
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import torch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from torch.utils.data import DataLoader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from torch.utils.data import Dataset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from gpt_download import download_and_load_gpt2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from previous_chapters import GPTModel, load_weights_into_gpt
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-10 07:26:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								class LoRALayer(torch.nn.Module):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, in_dim, out_dim, rank, alpha):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        super().__init__()
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 20:11:56 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.A = torch.nn.Parameter(torch.empty(in_dim, rank))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5))
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-10 07:26:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.alpha = alpha
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def forward(self, x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = self.alpha * (x @ self.A @ self.B)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class LinearWithLoRA(torch.nn.Module):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, linear, rank, alpha):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        super().__init__()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.linear = linear
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.lora = LoRALayer(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            linear.in_features, linear.out_features, rank, alpha
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def forward(self, x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.linear(x) + self.lora(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class SpamDataset(Dataset):
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:06:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, no_padding=False):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.data = pd.read_csv(csv_file)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Pre-tokenize texts
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.encoded_texts = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            tokenizer.encode(text)[:self.max_length]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for text in self.data["Text"]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ]
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:06:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if not no_padding:
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # Pad sequences to the longest sequence
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.encoded_texts = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                et + [pad_token_id] * (self.max_length - len(et))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                for et in self.encoded_texts
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            ]
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __getitem__(self, index):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        encoded = self.encoded_texts[index]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        label = self.data.iloc[index]["Label"]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __len__(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return len(self.data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def _longest_encoded_length(self, tokenizer):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for text in self.data["Text"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            encoded_length = len(tokenizer.encode(text))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if encoded_length > max_length:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                max_length = encoded_length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return max_length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def download_and_unzip(url, zip_path, extract_to, new_file_path):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if new_file_path.exists():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        print(f"{new_file_path} already exists. Skipping download and extraction.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Downloading the file
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    with urllib.request.urlopen(url) as response:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        with open(zip_path, "wb") as out_file:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            out_file.write(response.read())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Unzipping the file
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    with zipfile.ZipFile(zip_path, "r") as zip_ref:
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        zip_ref.extractall(extract_to)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Renaming the file to indicate its format
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    original_file = Path(extract_to) / "SMSSpamCollection"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    os.rename(original_file, new_file_path)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"File downloaded and saved as {new_file_path}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def random_split(df, train_frac, validation_frac):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Shuffle the entire DataFrame
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    df = df.sample(frac=1, random_state=123).reset_index(drop=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Calculate split indices
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_end = int(len(df) * train_frac)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    validation_end = train_end + int(len(df) * validation_frac)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Split the DataFrame
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_df = df[:train_end]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    validation_df = df[train_end:validation_end]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_df = df[validation_end:]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return train_df, validation_df, test_df
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-12 13:27:56 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def create_dataset_csvs(new_file_path):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Create balanced dataset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    n_spam = df[df["Label"] == "spam"].shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Sample and save csv files
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_df.to_csv("train.csv", index=None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    validation_df.to_csv("validation.csv", index=None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_df.to_csv("test.csv", index=None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def instantiate_model(choose_model, load_weights):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    BASE_CONFIG = {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "vocab_size": 50257,     # Vocabulary size
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "context_length": 1024,  # Context length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "drop_rate": 0.0,        # Dropout rate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "qkv_bias": True         # Query-key-value bias
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model_configs = {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    BASE_CONFIG.update(model_configs[choose_model])
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-29 21:50:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if not load_weights:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        torch.manual_seed(123)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-18 17:03:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    model = GPTModel(BASE_CONFIG, disable_causal_mask=args.disable_causal_mask)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if load_weights:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        load_weights_into_gpt(model, params)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def calc_loss_batch(input_batch, target_batch, model, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    trainable_token_pos=-1, ignore_index=-100):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    logits = model(input_batch)[:, trainable_token_pos, :]  # Logits of last output token
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    loss = torch.nn.functional.cross_entropy(logits, target_batch, ignore_index=ignore_index)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return loss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def calc_loss_loader(data_loader, model, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                     num_batches=None, trainable_token_pos=-1, ignore_index=-100):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    total_loss = 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if len(data_loader) == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return float("nan")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif num_batches is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = len(data_loader)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Reduce the number of batches to match the total number of batches in the data loader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # if num_batches exceeds the number of batches in the data loader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = min(num_batches, len(data_loader))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, (input_batch, target_batch) in enumerate(data_loader):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if i < num_batches:
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            loss = calc_loss_batch(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                input_batch, target_batch, model, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            total_loss += loss.item()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return total_loss / num_batches
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								@torch.no_grad()  # Disable gradient tracking for efficiency
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token_pos=-1):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    correct_predictions, num_examples = 0, 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if num_batches is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = len(data_loader)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = min(num_batches, len(data_loader))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i, (input_batch, target_batch) in enumerate(data_loader):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if i < num_batches:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            input_batch, target_batch = input_batch.to(device), target_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            logits = model(input_batch)[:, trainable_token_pos, :]  # Logits of last output token
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            predicted_labels = torch.argmax(logits, dim=-1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            num_examples += predicted_labels.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            correct_predictions += (predicted_labels == target_batch).sum().item()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return correct_predictions / num_examples
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def evaluate_model(model, train_loader, val_loader, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                   eval_iter, trainable_token_pos=-1, ignore_index=-100):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    with torch.no_grad():
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        train_loss = calc_loss_loader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            train_loader, model, device, num_batches=eval_iter,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_loss = calc_loss_loader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            val_loader, model, device, num_batches=eval_iter,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.train()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return train_loss, val_loss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-12 03:59:48 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                            eval_freq, eval_iter, max_steps=None, trainable_token_pos=-1,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                            accumulation_steps=1, ignore_index=-100):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Initialize lists to track losses and tokens seen
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_losses, val_losses, train_accs, val_accs = [], [], [], []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    examples_seen, global_step = 0, -1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Main training loop
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for epoch in range(num_epochs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model.train()  # Set model to training mode
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for batch_idx, (input_batch, target_batch) in enumerate(train_loader):
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            loss = calc_loss_batch(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                input_batch, target_batch, model, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            )
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Use gradient accumulation if accumulation_steps > 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # for an explanation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            loss /= accumulation_steps
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            loss.backward()  # Calculate loss gradients
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Use gradient accumulation if accumulation_steps > 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if batch_idx % accumulation_steps == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                optimizer.step()  # Update model weights using loss gradients
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-09 20:23:18 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            global_step += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Optional evaluation step
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if global_step % eval_freq == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                train_loss, val_loss = evaluate_model(
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    model, train_loader, val_loader, device, eval_iter,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    trainable_token_pos=trainable_token_pos, ignore_index=ignore_index
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                train_losses.append(train_loss)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                val_losses.append(val_loss)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                print(f"Ep {epoch+1} (Step {global_step:06d}): "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if max_steps is not None and global_step > max_steps:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # New: Calculate accuracy after each epoch
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token_pos=trainable_token_pos)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        print(f"Validation accuracy: {val_accuracy*100:.2f}%")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        train_accs.append(train_accuracy)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_accs.append(val_accuracy)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if max_steps is not None and global_step > max_steps:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return train_losses, val_losses, train_accs, val_accs, examples_seen
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-10 07:26:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def replace_linear_with_lora(model, rank, alpha):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for name, module in model.named_children():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if isinstance(module, torch.nn.Linear):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Replace the Linear layer with LinearWithLoRA
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            setattr(model, name, LinearWithLoRA(module, rank, alpha))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Recursively apply the same function to child modules
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            replace_linear_with_lora(module, rank, alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == "__main__":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser = argparse.ArgumentParser()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--model_size",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="gpt2-small (124M)",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            " 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--weights",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="pretrained",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Whether to use 'pretrained' or 'random' weights."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:48:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--trainable_layers",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="last_block",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-21 19:49:34 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Which layers to train. Options: 'all', 'last_block', 'last_two_blocks', 'last_layer', 'lora'."
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        "--trainable_token_pos",
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="last",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Which token position to train. Options: 'first', 'last'."
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--context_length",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="longest_training_example",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "The context length of the data inputs."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Options: 'longest_training_example', 'model_context_length' or integer value."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-10 07:26:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--lora_rank",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=8,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "The LoRA rank when choosing `--trainable_layers lora`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--lora_alpha",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=8,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "The LoRA alpha value when choosing `--trainable_layers lora`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--no_padding",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        action='store_true',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-07-16 14:07:04 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Disable padding, which means each example may have a different length."
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            " This requires setting `--batch_size 1`."
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:58:01 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--num_epochs",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=5,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Number of training epochs."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--batch_size",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=8,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "The batch size used for training."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--accumulation_steps",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=1,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Accumulation steps to allow for gradient accumulation."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            " See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html for explanation."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            " For example, setting `batch_size=8` and `accumulation_steps=1` compute the exact same"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            " loss and weight updates as setting `batch_size=1` and `accumulation_steps=8`, however,"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            " the latter setting uses more iterations."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-18 17:03:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--disable_causal_mask",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        action='store_true',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Disables the causal attention mask."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--ignore_index",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=-100,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-29 13:38:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Sets the `ignore_index` in the cross-entropy loss."
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-19 07:24:49 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    args = parser.parse_args()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if args.trainable_token_pos == "first":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        args.trainable_token_pos = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.trainable_token_pos == "last":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        args.trainable_token_pos = -1
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Invalid --trainable_token_pos argument")
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Load model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if args.weights == "pretrained":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        load_weights = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.weights == "random":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        load_weights = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Invalid --weights argument.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model = instantiate_model(args.model_size, load_weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        param.requires_grad = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if args.model_size == "gpt2-small (124M)":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        in_features = 768
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.model_size == "gpt2-medium (355M)":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        in_features = 1024
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.model_size == "gpt2-large (774M)":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        in_features = 1280
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.model_size == "gpt2-xl (1558M)":
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-09 07:40:09 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        in_features = 1600
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Invalid --model_size argument")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    torch.manual_seed(123)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if args.trainable_layers == "last_layer":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pass
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-21 19:49:34 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    elif args.trainable_layers == "last_block" or args.trainable_layers == "last_two_blocks":
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for param in model.trf_blocks[-1].parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for param in model.final_norm.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-21 19:49:34 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if args.trainable_layers == "last_two_blocks":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.trf_blocks[-2].parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    elif args.trainable_layers == "all":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-10 07:26:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    elif args.trainable_layers == "lora":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Invalid --trainable_layers argument.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.to(device)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Instantiate dataloaders
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    zip_path = "sms_spam_collection.zip"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    extract_to = "sms_spam_collection"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    base_path = Path(".")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    file_names = ["train.csv", "validation.csv", "test.csv"]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    all_exist = all((base_path / file_name).exists() for file_name in file_names)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if not all_exist:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        download_and_unzip(url, zip_path, extract_to, new_file_path)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        create_dataset_csvs(new_file_path)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    tokenizer = tiktoken.get_encoding("gpt2")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-29 21:50:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    train_dataset = None
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if args.no_padding:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if args.context_length == "model_context_length":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            max_length = model.pos_emb.weight.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif args.context_length == "longest_training_example":
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:06:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer, no_padding=args.no_padding)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            max_length = train_dataset.max_length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                max_length = int(args.context_length)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            except ValueError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                raise ValueError("Invalid --context_length argument")
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-24 07:23:11 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-29 21:50:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if train_dataset is None:
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:06:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    tokenizer = tiktoken.get_encoding("gpt2")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    num_workers = 0
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=train_dataset,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        batch_size=args.batch_size,
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        shuffle=True,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=True,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=val_dataset,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        batch_size=args.batch_size,
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=test_dataset,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        batch_size=args.batch_size,
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 06:50:43 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    assert train_dataset.max_length <= model.pos_emb.weight.shape[0], (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        f"Dataset length {train_dataset.max_length} exceeds model's context "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        f"length {model.pos_emb.weight.shape[0]}. Reinitialize data sets with "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        f"`max_length={model.pos_emb.weight.shape[0]}`"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Train model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    start_time = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    torch.manual_seed(123)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model, train_loader, val_loader, optimizer, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 07:55:51 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        num_epochs=args.num_epochs, eval_freq=50, eval_iter=5,
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-12 03:59:48 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        max_steps=None, trainable_token_pos=args.trainable_token_pos,
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        accumulation_steps=args.accumulation_steps
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    end_time = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    execution_time_minutes = (end_time - start_time) / 60
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Training completed in {execution_time_minutes:.2f} minutes.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Evaluate model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-23 11:43:20 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token_pos=args.trainable_token_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token_pos=args.trainable_token_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token_pos=args.trainable_token_pos)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-23 09:51:52 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Training accuracy: {train_accuracy*100:.2f}%")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Validation accuracy: {val_accuracy*100:.2f}%")
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-17 21:31:22 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    print(f"Test accuracy: {test_accuracy*100:.2f}%")
							 |