mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-10 17:51:43 +00:00
152 lines
5.9 KiB
Python
152 lines
5.9 KiB
Python
![]() |
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||
|
# Source for "Build a Large Language Model From Scratch"
|
||
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
|
||
|
class SelfAttention_v1(nn.Module):
|
||
|
|
||
|
def __init__(self, d_in, d_out):
|
||
|
super().__init__()
|
||
|
self.W_query = nn.Parameter(torch.rand(d_in, d_out))
|
||
|
self.W_key = nn.Parameter(torch.rand(d_in, d_out))
|
||
|
self.W_value = nn.Parameter(torch.rand(d_in, d_out))
|
||
|
|
||
|
def forward(self, x):
|
||
|
keys = x @ self.W_key
|
||
|
queries = x @ self.W_query
|
||
|
values = x @ self.W_value
|
||
|
|
||
|
attn_scores = queries @ keys.T # omega
|
||
|
attn_weights = torch.softmax(
|
||
|
attn_scores / keys.shape[-1]**0.5, dim=-1
|
||
|
)
|
||
|
|
||
|
context_vec = attn_weights @ values
|
||
|
return context_vec
|
||
|
|
||
|
|
||
|
class SelfAttention_v2(nn.Module):
|
||
|
|
||
|
def __init__(self, d_in, d_out, qkv_bias=False):
|
||
|
super().__init__()
|
||
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
|
||
|
def forward(self, x):
|
||
|
keys = self.W_key(x)
|
||
|
queries = self.W_query(x)
|
||
|
values = self.W_value(x)
|
||
|
|
||
|
attn_scores = queries @ keys.T
|
||
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||
|
|
||
|
context_vec = attn_weights @ values
|
||
|
return context_vec
|
||
|
|
||
|
|
||
|
class CausalAttention(nn.Module):
|
||
|
|
||
|
def __init__(self, d_in, d_out, context_length,
|
||
|
dropout, qkv_bias=False):
|
||
|
super().__init__()
|
||
|
self.d_out = d_out
|
||
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.dropout = nn.Dropout(dropout) # New
|
||
|
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, num_tokens, d_in = x.shape # New batch dimension b
|
||
|
# For inputs where `num_tokens` exceeds `context_length`, this will result in errors
|
||
|
# in the mask creation further below.
|
||
|
# In practice, this is not a problem since the LLM (chapters 4-7) ensures that inputs
|
||
|
# do not exceed `context_length` before reaching this forward method.
|
||
|
keys = self.W_key(x)
|
||
|
queries = self.W_query(x)
|
||
|
values = self.W_value(x)
|
||
|
|
||
|
attn_scores = queries @ keys.transpose(1, 2) # Changed transpose
|
||
|
attn_scores.masked_fill_( # New, _ ops are in-place
|
||
|
self.mask.bool()[:num_tokens, :num_tokens], -torch.inf) # `:num_tokens` to account for cases where the number of tokens in the batch is smaller than the supported context_size
|
||
|
attn_weights = torch.softmax(
|
||
|
attn_scores / keys.shape[-1]**0.5, dim=-1
|
||
|
)
|
||
|
attn_weights = self.dropout(attn_weights) # New
|
||
|
|
||
|
context_vec = attn_weights @ values
|
||
|
return context_vec
|
||
|
|
||
|
|
||
|
class MultiHeadAttentionWrapper(nn.Module):
|
||
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
||
|
super().__init__()
|
||
|
self.heads = nn.ModuleList(
|
||
|
[CausalAttention(d_in, d_out, context_length, dropout, qkv_bias)
|
||
|
for _ in range(num_heads)]
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return torch.cat([head(x) for head in self.heads], dim=-1)
|
||
|
|
||
|
|
||
|
class MultiHeadAttention(nn.Module):
|
||
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
||
|
super().__init__()
|
||
|
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
|
||
|
|
||
|
self.d_out = d_out
|
||
|
self.num_heads = num_heads
|
||
|
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||
|
|
||
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
|
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, num_tokens, d_in = x.shape
|
||
|
|
||
|
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||
|
queries = self.W_query(x)
|
||
|
values = self.W_value(x)
|
||
|
|
||
|
# We implicitly split the matrix by adding a `num_heads` dimension
|
||
|
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||
|
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
|
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
|
|
||
|
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
||
|
keys = keys.transpose(1, 2)
|
||
|
queries = queries.transpose(1, 2)
|
||
|
values = values.transpose(1, 2)
|
||
|
|
||
|
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||
|
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||
|
|
||
|
# Original mask truncated to the number of tokens and converted to boolean
|
||
|
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
|
||
|
|
||
|
# Use the mask to fill attention scores
|
||
|
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
||
|
|
||
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||
|
attn_weights = self.dropout(attn_weights)
|
||
|
|
||
|
# Shape: (b, num_tokens, num_heads, head_dim)
|
||
|
context_vec = (attn_weights @ values).transpose(1, 2)
|
||
|
|
||
|
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||
|
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||
|
context_vec = self.out_proj(context_vec) # optional projection
|
||
|
|
||
|
return context_vec
|