mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 18:00:08 +00:00 
			
		
		
		
	
		
			
	
	
		
			385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||
|  | # Source for "Build a Large Language Model From Scratch" | ||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||
|  | # | ||
|  | # This file collects all the relevant code that we covered thus far | ||
|  | # throughout Chapters 2-5. | ||
|  | 
 | ||
|  | import json | ||
|  | import os | ||
|  | import urllib | ||
|  | 
 | ||
|  | import numpy as np | ||
|  | import tensorflow as tf | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | from tqdm import tqdm | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 3 | ||
|  | ##################################### | ||
|  | class MultiHeadAttention(nn.Module): | ||
|  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | ||
|  |         super().__init__() | ||
|  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | ||
|  | 
 | ||
|  |         self.d_out = d_out | ||
|  |         self.num_heads = num_heads | ||
|  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | ||
|  | 
 | ||
|  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | ||
|  |         self.dropout = nn.Dropout(dropout) | ||
|  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         b, num_tokens, d_in = x.shape | ||
|  | 
 | ||
|  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | ||
|  |         queries = self.W_query(x) | ||
|  |         values = self.W_value(x) | ||
|  | 
 | ||
|  |         # We implicitly split the matrix by adding a `num_heads` dimension | ||
|  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | ||
|  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  | 
 | ||
|  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | ||
|  |         keys = keys.transpose(1, 2) | ||
|  |         queries = queries.transpose(1, 2) | ||
|  |         values = values.transpose(1, 2) | ||
|  | 
 | ||
|  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | ||
|  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | ||
|  | 
 | ||
|  |         # Original mask truncated to the number of tokens and converted to boolean | ||
|  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | ||
|  | 
 | ||
|  |         # Use the mask to fill attention scores | ||
|  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | ||
|  | 
 | ||
|  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | ||
|  |         attn_weights = self.dropout(attn_weights) | ||
|  | 
 | ||
|  |         # Shape: (b, num_tokens, num_heads, head_dim) | ||
|  |         context_vec = (attn_weights @ values).transpose(1, 2) | ||
|  | 
 | ||
|  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | ||
|  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | ||
|  |         context_vec = self.out_proj(context_vec)  # optional projection | ||
|  | 
 | ||
|  |         return context_vec | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 4 | ||
|  | ##################################### | ||
|  | class LayerNorm(nn.Module): | ||
|  |     def __init__(self, emb_dim): | ||
|  |         super().__init__() | ||
|  |         self.eps = 1e-5 | ||
|  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | ||
|  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         mean = x.mean(dim=-1, keepdim=True) | ||
|  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | ||
|  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | ||
|  |         return self.scale * norm_x + self.shift | ||
|  | 
 | ||
|  | 
 | ||
|  | class GELU(nn.Module): | ||
|  |     def __init__(self): | ||
|  |         super().__init__() | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return 0.5 * x * (1 + torch.tanh( | ||
|  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | ||
|  |             (x + 0.044715 * torch.pow(x, 3)) | ||
|  |         )) | ||
|  | 
 | ||
|  | 
 | ||
|  | class FeedForward(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.layers = nn.Sequential( | ||
|  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | ||
|  |             GELU(), | ||
|  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | ||
|  |         ) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return self.layers(x) | ||
|  | 
 | ||
|  | 
 | ||
|  | class TransformerBlock(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.att = MultiHeadAttention( | ||
|  |             d_in=cfg["emb_dim"], | ||
|  |             d_out=cfg["emb_dim"], | ||
|  |             context_length=cfg["context_length"], | ||
|  |             num_heads=cfg["n_heads"], | ||
|  |             dropout=cfg["drop_rate"], | ||
|  |             qkv_bias=cfg["qkv_bias"]) | ||
|  |         self.ff = FeedForward(cfg) | ||
|  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         # Shortcut connection for attention block | ||
|  |         shortcut = x | ||
|  |         x = self.norm1(x) | ||
|  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         # Shortcut connection for feed-forward block | ||
|  |         shortcut = x | ||
|  |         x = self.norm2(x) | ||
|  |         x = self.ff(x) | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         return x | ||
|  | 
 | ||
|  | 
 | ||
|  | class GPTModel(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | ||
|  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | ||
|  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |         self.trf_blocks = nn.Sequential( | ||
|  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | ||
|  | 
 | ||
|  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | ||
|  | 
 | ||
|  |     def forward(self, in_idx): | ||
|  |         batch_size, seq_len = in_idx.shape | ||
|  |         tok_embeds = self.tok_emb(in_idx) | ||
|  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | ||
|  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_emb(x) | ||
|  |         x = self.trf_blocks(x) | ||
|  |         x = self.final_norm(x) | ||
|  |         logits = self.out_head(x) | ||
|  |         return logits | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 5 | ||
|  | ##################################### | ||
|  | def text_to_token_ids(text, tokenizer): | ||
|  |     encoded = tokenizer.encode(text) | ||
|  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension | ||
|  |     return encoded_tensor | ||
|  | 
 | ||
|  | 
 | ||
|  | def token_ids_to_text(token_ids, tokenizer): | ||
|  |     flat = token_ids.squeeze(0)  # remove batch dimension | ||
|  |     return tokenizer.decode(flat.tolist()) | ||
|  | 
 | ||
|  | 
 | ||
|  | def download_and_load_gpt2(model_size, models_dir): | ||
|  |     # Validate model size | ||
|  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | ||
|  |     if model_size not in allowed_sizes: | ||
|  |         raise ValueError(f"Model size not in {allowed_sizes}") | ||
|  | 
 | ||
|  |     # Define paths | ||
|  |     model_dir = os.path.join(models_dir, model_size) | ||
|  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | ||
|  |     filenames = [ | ||
|  |         "checkpoint", "encoder.json", "hparams.json", | ||
|  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | ||
|  |         "model.ckpt.meta", "vocab.bpe" | ||
|  |     ] | ||
|  | 
 | ||
|  |     # Download files | ||
|  |     os.makedirs(model_dir, exist_ok=True) | ||
|  |     for filename in filenames: | ||
|  |         file_url = os.path.join(base_url, model_size, filename) | ||
|  |         file_path = os.path.join(model_dir, filename) | ||
|  |         download_file(file_url, file_path) | ||
|  | 
 | ||
|  |     # Load settings and params | ||
|  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | ||
|  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | ||
|  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | ||
|  | 
 | ||
|  |     return settings, params | ||
|  | 
 | ||
|  | 
 | ||
|  | def download_file(url, destination): | ||
|  |     # Send a GET request to download the file | ||
|  |     with urllib.request.urlopen(url) as response: | ||
|  |         # Get the total file size from headers, defaulting to 0 if not present | ||
|  |         file_size = int(response.headers.get("Content-Length", 0)) | ||
|  | 
 | ||
|  |         # Check if file exists and has the same size | ||
|  |         if os.path.exists(destination): | ||
|  |             file_size_local = os.path.getsize(destination) | ||
|  |             if file_size == file_size_local: | ||
|  |                 print(f"File already exists and is up-to-date: {destination}") | ||
|  |                 return | ||
|  | 
 | ||
|  |         # Define the block size for reading the file | ||
|  |         block_size = 1024  # 1 Kilobyte | ||
|  | 
 | ||
|  |         # Initialize the progress bar with total file size | ||
|  |         progress_bar_description = os.path.basename(url)  # Extract filename from URL | ||
|  |         with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | ||
|  |             # Open the destination file in binary write mode | ||
|  |             with open(destination, "wb") as file: | ||
|  |                 # Read the file in chunks and write to destination | ||
|  |                 while True: | ||
|  |                     chunk = response.read(block_size) | ||
|  |                     if not chunk: | ||
|  |                         break | ||
|  |                     file.write(chunk) | ||
|  |                     progress_bar.update(len(chunk))  # Update progress bar | ||
|  | 
 | ||
|  | 
 | ||
|  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | ||
|  |     # Initialize parameters dictionary with empty blocks for each layer | ||
|  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | ||
|  | 
 | ||
|  |     # Iterate over each variable in the checkpoint | ||
|  |     for name, _ in tf.train.list_variables(ckpt_path): | ||
|  |         # Load the variable and remove singleton dimensions | ||
|  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | ||
|  | 
 | ||
|  |         # Process the variable name to extract relevant parts | ||
|  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | ||
|  | 
 | ||
|  |         # Identify the target dictionary for the variable | ||
|  |         target_dict = params | ||
|  |         if variable_name_parts[0].startswith("h"): | ||
|  |             layer_number = int(variable_name_parts[0][1:]) | ||
|  |             target_dict = params["blocks"][layer_number] | ||
|  | 
 | ||
|  |         # Recursively access or create nested dictionaries | ||
|  |         for key in variable_name_parts[1:-1]: | ||
|  |             target_dict = target_dict.setdefault(key, {}) | ||
|  | 
 | ||
|  |         # Assign the variable array to the last key | ||
|  |         last_key = variable_name_parts[-1] | ||
|  |         target_dict[last_key] = variable_array | ||
|  | 
 | ||
|  |     return params | ||
|  | 
 | ||
|  | 
 | ||
|  | def assign(left, right): | ||
|  |     if left.shape != right.shape: | ||
|  |         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | ||
|  |     return torch.nn.Parameter(torch.tensor(right)) | ||
|  | 
 | ||
|  | 
 | ||
|  | def load_weights_into_gpt(gpt, params): | ||
|  |     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | ||
|  |     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | ||
|  | 
 | ||
|  |     for b in range(len(params["blocks"])): | ||
|  |         q_w, k_w, v_w = np.split( | ||
|  |             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | ||
|  |         gpt.trf_blocks[b].att.W_query.weight = assign( | ||
|  |             gpt.trf_blocks[b].att.W_query.weight, q_w.T) | ||
|  |         gpt.trf_blocks[b].att.W_key.weight = assign( | ||
|  |             gpt.trf_blocks[b].att.W_key.weight, k_w.T) | ||
|  |         gpt.trf_blocks[b].att.W_value.weight = assign( | ||
|  |             gpt.trf_blocks[b].att.W_value.weight, v_w.T) | ||
|  | 
 | ||
|  |         q_b, k_b, v_b = np.split( | ||
|  |             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | ||
|  |         gpt.trf_blocks[b].att.W_query.bias = assign( | ||
|  |             gpt.trf_blocks[b].att.W_query.bias, q_b) | ||
|  |         gpt.trf_blocks[b].att.W_key.bias = assign( | ||
|  |             gpt.trf_blocks[b].att.W_key.bias, k_b) | ||
|  |         gpt.trf_blocks[b].att.W_value.bias = assign( | ||
|  |             gpt.trf_blocks[b].att.W_value.bias, v_b) | ||
|  | 
 | ||
|  |         gpt.trf_blocks[b].att.out_proj.weight = assign( | ||
|  |             gpt.trf_blocks[b].att.out_proj.weight, | ||
|  |             params["blocks"][b]["attn"]["c_proj"]["w"].T) | ||
|  |         gpt.trf_blocks[b].att.out_proj.bias = assign( | ||
|  |             gpt.trf_blocks[b].att.out_proj.bias, | ||
|  |             params["blocks"][b]["attn"]["c_proj"]["b"]) | ||
|  | 
 | ||
|  |         gpt.trf_blocks[b].ff.layers[0].weight = assign( | ||
|  |             gpt.trf_blocks[b].ff.layers[0].weight, | ||
|  |             params["blocks"][b]["mlp"]["c_fc"]["w"].T) | ||
|  |         gpt.trf_blocks[b].ff.layers[0].bias = assign( | ||
|  |             gpt.trf_blocks[b].ff.layers[0].bias, | ||
|  |             params["blocks"][b]["mlp"]["c_fc"]["b"]) | ||
|  |         gpt.trf_blocks[b].ff.layers[2].weight = assign( | ||
|  |             gpt.trf_blocks[b].ff.layers[2].weight, | ||
|  |             params["blocks"][b]["mlp"]["c_proj"]["w"].T) | ||
|  |         gpt.trf_blocks[b].ff.layers[2].bias = assign( | ||
|  |             gpt.trf_blocks[b].ff.layers[2].bias, | ||
|  |             params["blocks"][b]["mlp"]["c_proj"]["b"]) | ||
|  | 
 | ||
|  |         gpt.trf_blocks[b].norm1.scale = assign( | ||
|  |             gpt.trf_blocks[b].norm1.scale, | ||
|  |             params["blocks"][b]["ln_1"]["g"]) | ||
|  |         gpt.trf_blocks[b].norm1.shift = assign( | ||
|  |             gpt.trf_blocks[b].norm1.shift, | ||
|  |             params["blocks"][b]["ln_1"]["b"]) | ||
|  |         gpt.trf_blocks[b].norm2.scale = assign( | ||
|  |             gpt.trf_blocks[b].norm2.scale, | ||
|  |             params["blocks"][b]["ln_2"]["g"]) | ||
|  |         gpt.trf_blocks[b].norm2.shift = assign( | ||
|  |             gpt.trf_blocks[b].norm2.shift, | ||
|  |             params["blocks"][b]["ln_2"]["b"]) | ||
|  | 
 | ||
|  |     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | ||
|  |     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | ||
|  |     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | ||
|  | 
 | ||
|  | 
 | ||
|  | def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): | ||
|  | 
 | ||
|  |     # For-loop is the same as before: Get logits, and only focus on last time step | ||
|  |     for _ in range(max_new_tokens): | ||
|  |         idx_cond = idx[:, -context_size:] | ||
|  |         with torch.no_grad(): | ||
|  |             logits = model(idx_cond) | ||
|  |         logits = logits[:, -1, :] | ||
|  | 
 | ||
|  |         # New: Filter logits with top_k sampling | ||
|  |         if top_k is not None: | ||
|  |             # Keep only top_k values | ||
|  |             top_logits, _ = torch.topk(logits, top_k) | ||
|  |             min_val = top_logits[:, -1] | ||
|  |             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) | ||
|  | 
 | ||
|  |         # New: Apply temperature scaling | ||
|  |         if temperature > 0.0: | ||
|  |             logits = logits / temperature | ||
|  | 
 | ||
|  |             # Apply softmax to get probabilities | ||
|  |             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len) | ||
|  | 
 | ||
|  |             # Sample from the distribution | ||
|  |             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1) | ||
|  | 
 | ||
|  |         # Otherwise same as before: get idx of the vocab entry with the highest logits value | ||
|  |         else: | ||
|  |             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1) | ||
|  | 
 | ||
|  |         if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified | ||
|  |             break | ||
|  | 
 | ||
|  |         # Same as before: append sampled index to the running sequence | ||
|  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1) | ||
|  | 
 | ||
|  |     return idx |