| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import json | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import os | 
					
						
							| 
									
										
										
										
											2024-04-21 14:15:05 -05:00
										 |  |  | import urllib.request | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # import requests | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | import tensorflow as tf | 
					
						
							|  |  |  | import tiktoken | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from tqdm import tqdm | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Import from local files | 
					
						
							|  |  |  | from previous_chapters import GPTModel | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def text_to_token_ids(text, tokenizer): | 
					
						
							|  |  |  |     encoded = tokenizer.encode(text) | 
					
						
							|  |  |  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension | 
					
						
							|  |  |  |     return encoded_tensor | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def token_ids_to_text(token_ids, tokenizer): | 
					
						
							|  |  |  |     flat = token_ids.squeeze(0)  # remove batch dimension | 
					
						
							|  |  |  |     return tokenizer.decode(flat.tolist()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_and_load_gpt2(model_size, models_dir): | 
					
						
							|  |  |  |     # Validate model size | 
					
						
							|  |  |  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | 
					
						
							|  |  |  |     if model_size not in allowed_sizes: | 
					
						
							|  |  |  |         raise ValueError(f"Model size not in {allowed_sizes}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Define paths | 
					
						
							|  |  |  |     model_dir = os.path.join(models_dir, model_size) | 
					
						
							|  |  |  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | 
					
						
							|  |  |  |     filenames = [ | 
					
						
							| 
									
										
										
										
											2024-04-07 08:41:09 -05:00
										 |  |  |         "checkpoint", "encoder.json", "hparams.json", | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | 
					
						
							|  |  |  |         "model.ckpt.meta", "vocab.bpe" | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Download files | 
					
						
							|  |  |  |     os.makedirs(model_dir, exist_ok=True) | 
					
						
							|  |  |  |     for filename in filenames: | 
					
						
							|  |  |  |         file_url = os.path.join(base_url, model_size, filename) | 
					
						
							|  |  |  |         file_path = os.path.join(model_dir, filename) | 
					
						
							|  |  |  |         download_file(file_url, file_path) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  |     # Load settings and params | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | 
					
						
							| 
									
										
										
										
											2024-04-07 08:41:09 -05:00
										 |  |  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  |     return settings, params | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-21 14:15:05 -05:00
										 |  |  | """
 | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | def download_file(url, destination): | 
					
						
							|  |  |  |     # Send a GET request to download the file in streaming mode | 
					
						
							|  |  |  |     response = requests.get(url, stream=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Get the total file size from headers, defaulting to 0 if not present | 
					
						
							|  |  |  |     file_size = int(response.headers.get("content-length", 0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Check if file exists and has the same size | 
					
						
							|  |  |  |     if os.path.exists(destination): | 
					
						
							|  |  |  |         file_size_local = os.path.getsize(destination) | 
					
						
							|  |  |  |         if file_size == file_size_local: | 
					
						
							|  |  |  |             print(f"File already exists and is up-to-date: {destination}") | 
					
						
							|  |  |  |             return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Define the block size for reading the file | 
					
						
							|  |  |  |     block_size = 1024  # 1 Kilobyte | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Initialize the progress bar with total file size | 
					
						
							|  |  |  |     progress_bar_description = url.split("/")[-1]  # Extract filename from URL | 
					
						
							|  |  |  |     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | 
					
						
							|  |  |  |         # Open the destination file in binary write mode | 
					
						
							|  |  |  |         with open(destination, "wb") as file: | 
					
						
							|  |  |  |             # Iterate over the file data in chunks | 
					
						
							|  |  |  |             for chunk in response.iter_content(block_size): | 
					
						
							|  |  |  |                 progress_bar.update(len(chunk))  # Update progress bar | 
					
						
							|  |  |  |                 file.write(chunk)  # Write the chunk to the file | 
					
						
							| 
									
										
										
										
											2024-04-21 14:15:05 -05:00
										 |  |  | """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_file(url, destination): | 
					
						
							|  |  |  |     # Send a GET request to download the file | 
					
						
							|  |  |  |     with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |         # Get the total file size from headers, defaulting to 0 if not present | 
					
						
							|  |  |  |         file_size = int(response.headers.get("Content-Length", 0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Check if file exists and has the same size | 
					
						
							|  |  |  |         if os.path.exists(destination): | 
					
						
							|  |  |  |             file_size_local = os.path.getsize(destination) | 
					
						
							|  |  |  |             if file_size == file_size_local: | 
					
						
							|  |  |  |                 print(f"File already exists and is up-to-date: {destination}") | 
					
						
							|  |  |  |                 return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Define the block size for reading the file | 
					
						
							|  |  |  |         block_size = 1024  # 1 Kilobyte | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Initialize the progress bar with total file size | 
					
						
							|  |  |  |         progress_bar_description = os.path.basename(url)  # Extract filename from URL | 
					
						
							|  |  |  |         with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | 
					
						
							|  |  |  |             # Open the destination file in binary write mode | 
					
						
							|  |  |  |             with open(destination, "wb") as file: | 
					
						
							|  |  |  |                 # Read the file in chunks and write to destination | 
					
						
							|  |  |  |                 while True: | 
					
						
							|  |  |  |                     chunk = response.read(block_size) | 
					
						
							|  |  |  |                     if not chunk: | 
					
						
							|  |  |  |                         break | 
					
						
							|  |  |  |                     file.write(chunk) | 
					
						
							|  |  |  |                     progress_bar.update(len(chunk))  # Update progress bar | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |     # Initialize parameters dictionary with empty blocks for each layer | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # Iterate over each variable in the checkpoint | 
					
						
							|  |  |  |     for name, _ in tf.train.list_variables(ckpt_path): | 
					
						
							|  |  |  |         # Load the variable and remove singleton dimensions | 
					
						
							|  |  |  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Process the variable name to extract relevant parts | 
					
						
							|  |  |  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Identify the target dictionary for the variable | 
					
						
							|  |  |  |         target_dict = params | 
					
						
							|  |  |  |         if variable_name_parts[0].startswith("h"): | 
					
						
							|  |  |  |             layer_number = int(variable_name_parts[0][1:]) | 
					
						
							|  |  |  |             target_dict = params["blocks"][layer_number] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Recursively access or create nested dictionaries | 
					
						
							|  |  |  |         for key in variable_name_parts[1:-1]: | 
					
						
							|  |  |  |             target_dict = target_dict.setdefault(key, {}) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Assign the variable array to the last key | 
					
						
							|  |  |  |         last_key = variable_name_parts[-1] | 
					
						
							|  |  |  |         target_dict[last_key] = variable_array | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return params | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def assign(left, right): | 
					
						
							|  |  |  |     if left.shape != right.shape: | 
					
						
							|  |  |  |         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | 
					
						
							|  |  |  |     return torch.nn.Parameter(torch.tensor(right)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_weights_into_gpt(gpt, params): | 
					
						
							|  |  |  |     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | 
					
						
							|  |  |  |     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for b in range(len(params["blocks"])): | 
					
						
							| 
									
										
										
										
											2024-03-31 20:28:51 -05:00
										 |  |  |         q_w, k_w, v_w = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.weight, q_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.weight, k_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.weight, v_w.T) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q_b, k_b, v_b = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.bias, q_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.bias, k_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.bias, v_b) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.weight, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.bias, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | 
					
						
							|  |  |  |     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | 
					
						
							|  |  |  |     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # For-loop is the same as before: Get logits, and only focus on last time step | 
					
						
							|  |  |  |     for _ in range(max_new_tokens): | 
					
						
							|  |  |  |         idx_cond = idx[:, -context_size:] | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             logits = model(idx_cond) | 
					
						
							|  |  |  |         logits = logits[:, -1, :] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # New: Filter logits with top_k sampling | 
					
						
							|  |  |  |         if top_k is not None: | 
					
						
							|  |  |  |             # Keep only top_k values | 
					
						
							|  |  |  |             top_logits, _ = torch.topk(logits, top_k) | 
					
						
							|  |  |  |             min_val = top_logits[:, -1] | 
					
						
							|  |  |  |             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # New: Apply temperature scaling | 
					
						
							|  |  |  |         if temperature > 0.0: | 
					
						
							|  |  |  |             logits = logits / temperature | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Apply softmax to get probabilities | 
					
						
							|  |  |  |             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Sample from the distribution | 
					
						
							|  |  |  |             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Otherwise same as before: get idx of the vocab entry with the highest logits value | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Same as before: append sampled index to the running sequence | 
					
						
							|  |  |  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return idx | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(gpt_config, input_prompt, model_size): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-04-05 07:24:46 -05:00
										 |  |  |     settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     gpt = GPTModel(gpt_config) | 
					
						
							|  |  |  |     load_weights_into_gpt(gpt, params) | 
					
						
							|  |  |  |     gpt.to(device) | 
					
						
							| 
									
										
										
										
											2024-03-20 08:43:18 -05:00
										 |  |  |     gpt.eval() | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     token_ids = generate( | 
					
						
							|  |  |  |         model=gpt, | 
					
						
							|  |  |  |         idx=text_to_token_ids(input_prompt, tokenizer), | 
					
						
							| 
									
										
										
										
											2024-03-20 08:43:18 -05:00
										 |  |  |         max_new_tokens=30, | 
					
						
							| 
									
										
										
										
											2024-04-04 07:27:41 -05:00
										 |  |  |         context_size=gpt_config["context_length"], | 
					
						
							| 
									
										
										
										
											2024-03-20 08:43:18 -05:00
										 |  |  |         top_k=1, | 
					
						
							|  |  |  |         temperature=1.0 | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     print("Output text:\n", token_ids_to_text(token_ids, tokenizer)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     torch.manual_seed(123) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-31 08:45:14 -05:00
										 |  |  |     CHOOSE_MODEL = "gpt2-small (124M)" | 
					
						
							| 
									
										
										
										
											2024-03-20 08:43:18 -05:00
										 |  |  |     INPUT_PROMPT = "Every effort moves" | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     BASE_CONFIG = { | 
					
						
							| 
									
										
										
										
											2024-04-04 07:27:41 -05:00
										 |  |  |         "vocab_size": 50257,     # Vocabulary size | 
					
						
							|  |  |  |         "context_length": 1024,  # Context length | 
					
						
							|  |  |  |         "drop_rate": 0.0,        # Dropout rate | 
					
						
							|  |  |  |         "qkv_bias": True         # Query-key-value bias | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model_configs = { | 
					
						
							| 
									
										
										
										
											2024-03-31 08:45:14 -05:00
										 |  |  |         "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, | 
					
						
							|  |  |  |         "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, | 
					
						
							|  |  |  |         "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, | 
					
						
							|  |  |  |         "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-31 08:45:14 -05:00
										 |  |  |     model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")") | 
					
						
							| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     BASE_CONFIG.update(model_configs[CHOOSE_MODEL]) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-31 08:45:14 -05:00
										 |  |  |     main(BASE_CONFIG, INPUT_PROMPT, model_size) |