487 lines
17 KiB
Python
Raw Normal View History

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import argparse
import os
from pathlib import Path
import time
import urllib.request
import zipfile
import pandas as pd
import tiktoken
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from gpt_download import download_and_load_gpt2
from previous_chapters import GPTModel, load_weights_into_gpt
class LoRALayer(torch.nn.Module):
def __init__(self, in_dim, out_dim, rank, alpha):
super().__init__()
std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev)
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
self.alpha = alpha
def forward(self, x):
x = self.alpha * (x @ self.A @ self.B)
return x
class LinearWithLoRA(torch.nn.Module):
def __init__(self, linear, rank, alpha):
super().__init__()
self.linear = linear
self.lora = LoRALayer(
linear.in_features, linear.out_features, rank, alpha
)
def forward(self, x):
return self.linear(x) + self.lora(x)
class SpamDataset(Dataset):
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
self.data = pd.read_csv(csv_file)
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
# Pre-tokenize texts
self.encoded_texts = [
tokenizer.encode(text)[:self.max_length]
for text in self.data["Text"]
]
# Pad sequences to the longest sequence
self.encoded_texts = [
et + [pad_token_id] * (self.max_length - len(et))
for et in self.encoded_texts
]
def __getitem__(self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
def __len__(self):
return len(self.data)
def _longest_encoded_length(self, tokenizer):
max_length = 0
for text in self.data["Text"]:
encoded_length = len(tokenizer.encode(text))
if encoded_length > max_length:
max_length = encoded_length
return max_length
def download_and_unzip(url, zip_path, extract_to, new_file_path):
if new_file_path.exists():
print(f"{new_file_path} already exists. Skipping download and extraction.")
return
# Downloading the file
with urllib.request.urlopen(url) as response:
with open(zip_path, "wb") as out_file:
out_file.write(response.read())
# Unzipping the file
2024-04-24 07:23:11 -05:00
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
# Renaming the file to indicate its format
original_file = Path(extract_to) / "SMSSpamCollection"
os.rename(original_file, new_file_path)
print(f"File downloaded and saved as {new_file_path}")
def random_split(df, train_frac, validation_frac):
# Shuffle the entire DataFrame
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
# Calculate split indices
train_end = int(len(df) * train_frac)
validation_end = train_end + int(len(df) * validation_frac)
# Split the DataFrame
train_df = df[:train_end]
validation_df = df[train_end:validation_end]
test_df = df[validation_end:]
return train_df, validation_df, test_df
def create_dataset_csvs(data_file_path):
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
# Create balanced dataset
n_spam = df[df["Label"] == "spam"].shape[0]
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
# Sample and save csv files
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
train_df.to_csv("train.csv", index=None)
validation_df.to_csv("validation.csv", index=None)
test_df.to_csv("test.csv", index=None)
2024-04-24 07:23:11 -05:00
def instantiate_model(choose_model, load_weights):
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
BASE_CONFIG.update(model_configs[choose_model])
2024-04-29 21:50:07 -05:00
if not load_weights:
torch.manual_seed(123)
2024-04-24 07:23:11 -05:00
model = GPTModel(BASE_CONFIG)
2024-04-24 07:23:11 -05:00
if load_weights:
model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
load_weights_into_gpt(model, params)
model.eval()
return model
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
2024-05-05 12:21:10 -05:00
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
loss = torch.nn.functional.cross_entropy(logits, target_batch)
return loss
def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
total_loss = 0.
if len(data_loader) == 0:
return float("nan")
elif num_batches is None:
num_batches = len(data_loader)
else:
# Reduce the number of batches to match the total number of batches in the data loader
# if num_batches exceeds the number of batches in the data loader
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
total_loss += loss.item()
else:
break
return total_loss / num_batches
@torch.no_grad() # Disable gradient tracking for efficiency
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
model.eval()
correct_predictions, num_examples = 0, 0
if num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
2024-05-05 12:21:10 -05:00
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
predicted_labels = torch.argmax(logits, dim=-1)
num_examples += predicted_labels.shape[0]
correct_predictions += (predicted_labels == target_batch).sum().item()
else:
break
return correct_predictions / num_examples
def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1):
model.eval()
with torch.no_grad():
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
model.train()
return train_loss, val_loss
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1):
# Initialize lists to track losses and tokens seen
train_losses, val_losses, train_accs, val_accs = [], [], [], []
examples_seen, global_step = 0, -1
# Main training loop
for epoch in range(num_epochs):
model.train() # Set model to training mode
for input_batch, target_batch in train_loader:
optimizer.zero_grad() # Reset loss gradients from previous epoch
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
loss.backward() # Calculate loss gradients
optimizer.step() # Update model weights using loss gradients
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
global_step += 1
# Optional evaluation step
if global_step % eval_freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f"Ep {epoch+1} (Step {global_step:06d}): "
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
if max_steps is not None and global_step > max_steps:
break
# New: Calculate accuracy after each epoch
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
train_accs.append(train_accuracy)
val_accs.append(val_accuracy)
if max_steps is not None and global_step > max_steps:
break
return train_losses, val_losses, train_accs, val_accs, examples_seen
def replace_linear_with_lora(model, rank, alpha):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
# Replace the Linear layer with LinearWithLoRA
setattr(model, name, LinearWithLoRA(module, rank, alpha))
else:
# Recursively apply the same function to child modules
replace_linear_with_lora(module, rank, alpha)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_size",
type=str,
default="gpt2-small (124M)",
help=(
"Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
" 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
)
)
2024-04-24 07:23:11 -05:00
parser.add_argument(
"--weights",
type=str,
default="pretrained",
help=(
"Whether to use 'pretrained' or 'random' weights."
)
2024-04-24 07:48:51 -05:00
)
parser.add_argument(
"--trainable_layers",
type=str,
default="last_block",
help=(
"Which layers to train. Options: 'all', 'last_block', 'last_layer', 'lora'."
)
)
parser.add_argument(
"--trainable_token",
type=str,
default="last",
help=(
"Which token to train. Options: 'first', 'last'."
)
)
2024-04-24 07:23:11 -05:00
parser.add_argument(
"--context_length",
type=str,
default="longest_training_example",
help=(
"The context length of the data inputs."
"Options: 'longest_training_example', 'model_context_length' or integer value."
)
)
parser.add_argument(
"--lora_rank",
type=int,
default=8,
help=(
"The LoRA rank when choosing `--trainable_layers lora`"
)
)
parser.add_argument(
"--lora_alpha",
type=int,
default=8,
help=(
"The LoRA alpha value when choosing `--trainable_layers lora`"
)
)
args = parser.parse_args()
if args.trainable_token == "first":
args.trainable_token = 0
elif args.trainable_token == "last":
args.trainable_token = -1
else:
raise ValueError("Invalid --trainable_token argument")
2024-04-24 07:23:11 -05:00
###############################
# Load model
###############################
if args.weights == "pretrained":
load_weights = True
elif args.weights == "random":
load_weights = False
else:
raise ValueError("Invalid --weights argument.")
model = instantiate_model(args.model_size, load_weights)
for param in model.parameters():
param.requires_grad = False
if args.model_size == "gpt2-small (124M)":
in_features = 768
elif args.model_size == "gpt2-medium (355M)":
in_features = 1024
elif args.model_size == "gpt2-large (774M)":
in_features = 1280
elif args.model_size == "gpt2-xl (1558M)":
2024-05-09 07:40:09 -05:00
in_features = 1600
2024-04-24 07:23:11 -05:00
else:
raise ValueError("Invalid --model_size argument")
torch.manual_seed(123)
model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
if args.trainable_layers == "last_layer":
pass
elif args.trainable_layers == "last_block":
for param in model.trf_blocks[-1].parameters():
param.requires_grad = True
for param in model.final_norm.parameters():
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
elif args.trainable_layers == "lora":
replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha)
2024-04-24 07:23:11 -05:00
else:
raise ValueError("Invalid --trainable_layers argument.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
###############################
# Instantiate dataloaders
###############################
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
zip_path = "sms_spam_collection.zip"
extract_to = "sms_spam_collection"
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
base_path = Path(".")
file_names = ["train.csv", "validation.csv", "test.csv"]
all_exist = all((base_path / file_name).exists() for file_name in file_names)
if not all_exist:
download_and_unzip(url, zip_path, extract_to, new_file_path)
create_dataset_csvs(new_file_path)
tokenizer = tiktoken.get_encoding("gpt2")
2024-04-29 21:50:07 -05:00
train_dataset = None
2024-04-24 07:23:11 -05:00
if args.context_length == "model_context_length":
max_length = model.pos_emb.weight.shape[0]
elif args.context_length == "longest_training_example":
2024-04-29 21:50:07 -05:00
train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer)
max_length = train_dataset.max_length
2024-04-24 07:23:11 -05:00
else:
try:
max_length = int(args.context_length)
except ValueError:
raise ValueError("Invalid --context_length argument")
2024-04-29 21:50:07 -05:00
if train_dataset is None:
train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer)
2024-04-24 07:23:11 -05:00
val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer)
test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer)
tokenizer = tiktoken.get_encoding("gpt2")
num_workers = 0
batch_size = 8
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
###############################
# Train model
###############################
start_time = time.time()
torch.manual_seed(123)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
num_epochs = 5
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token
)
end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
###############################
# Evaluate model
###############################
train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
print(f"Training accuracy: {train_accuracy*100:.2f}%")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
print(f"Test accuracy: {test_accuracy*100:.2f}%")