2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Source for "Build a Large Language Model From Scratch"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Code: https://github.com/rasbt/LLMs-from-scratch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import argparse
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from pathlib import Path
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import pandas as pd
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								import torch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from torch.utils.data import DataLoader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from torch.utils.data import Dataset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from transformers import AutoTokenizer, AutoModelForSequenceClassification
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class IMDBDataset(Dataset):
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, use_attention_mask=False):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.data = pd.read_csv(csv_file)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.pad_token_id = pad_token_id
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.use_attention_mask = use_attention_mask
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Pre-tokenize texts and create attention masks if required
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.encoded_texts = [
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            tokenizer.encode(text, truncation=True, max_length=self.max_length)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for text in self.data["text"]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.encoded_texts = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            et + [pad_token_id] * (self.max_length - len(et))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for et in self.encoded_texts
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if self.use_attention_mask:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.attention_masks = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                self._create_attention_mask(et)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                for et in self.encoded_texts
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            ]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.attention_masks = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def _create_attention_mask(self, encoded_text):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return [1 if token_id != self.pad_token_id else 0 for token_id in encoded_text]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __getitem__(self, index):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        encoded = self.encoded_texts[index]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        label = self.data.iloc[index]["label"]
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if self.use_attention_mask:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            attention_mask = self.attention_masks[index]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            attention_mask = torch.ones(self.max_length, dtype=torch.long)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            torch.tensor(encoded, dtype=torch.long),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            torch.tensor(attention_mask, dtype=torch.long),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            torch.tensor(label, dtype=torch.long)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __len__(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return len(self.data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def _longest_encoded_length(self, tokenizer):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for text in self.data["text"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            encoded_length = len(tokenizer.encode(text))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if encoded_length > max_length:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                max_length = encoded_length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return max_length
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    attention_mask_batch = attention_mask_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-05 12:21:10 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # logits = model(input_batch)[:, -1, :]  # Logits of last output token
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    logits = model(input_batch, attention_mask=attention_mask_batch).logits
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    loss = torch.nn.functional.cross_entropy(logits, target_batch)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return loss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Same as in chapter 5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def calc_loss_loader(data_loader, model, device, num_batches=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    total_loss = 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if num_batches is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = len(data_loader)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Reduce the number of batches to match the total number of batches in the data loader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # if num_batches exceeds the number of batches in the data loader
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = min(num_batches, len(data_loader))
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if i < num_batches:
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            total_loss += loss.item()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return total_loss / num_batches
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								@torch.no_grad()  # Disable gradient tracking for efficiency
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def calc_accuracy_loader(data_loader, model, device, num_batches=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    correct_predictions, num_examples = 0, 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if num_batches is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = len(data_loader)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_batches = min(num_batches, len(data_loader))
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if i < num_batches:
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            attention_mask_batch = attention_mask_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            input_batch, target_batch = input_batch.to(device), target_batch.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-05 12:21:10 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # logits = model(input_batch)[:, -1, :]  # Logits of last output token
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            logits = model(input_batch, attention_mask=attention_mask_batch).logits
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            predicted_labels = torch.argmax(logits, dim=1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            num_examples += predicted_labels.shape[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            correct_predictions += (predicted_labels == target_batch).sum().item()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return correct_predictions / num_examples
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def evaluate_model(model, train_loader, val_loader, device, eval_iter):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    with torch.no_grad():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.train()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return train_loss, val_loss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-12 03:59:48 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                            eval_freq, eval_iter, max_steps=None):
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Initialize lists to track losses and tokens seen
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_losses, val_losses, train_accs, val_accs = [], [], [], []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    examples_seen, global_step = 0, -1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Main training loop
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for epoch in range(num_epochs):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model.train()  # Set model to training mode
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for input_batch, attention_mask_batch, target_batch in train_loader:
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-09 06:14:02 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            loss.backward()  # Calculate loss gradients
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            optimizer.step()  # Update model weights using loss gradients
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            global_step += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Optional evaluation step
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if global_step % eval_freq == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                train_loss, val_loss = evaluate_model(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    model, train_loader, val_loader, device, eval_iter)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                train_losses.append(train_loss)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                val_losses.append(val_loss)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                print(f"Ep {epoch+1} (Step {global_step:06d}): "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if max_steps is not None and global_step > max_steps:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # New: Calculate accuracy after each epoch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        print(f"Validation accuracy: {val_accuracy*100:.2f}%")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        train_accs.append(train_accuracy)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        val_accs.append(val_accuracy)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if max_steps is not None and global_step > max_steps:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return train_losses, val_losses, train_accs, val_accs, examples_seen
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == "__main__":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser = argparse.ArgumentParser()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--trainable_layers",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        default="all",
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Which layers to train. Options: 'all', 'last_block', 'last_layer'."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--use_attention_mask",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="true",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Whether to use a attention mask for padding tokens. Options: 'true', 'false'."
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        "--model",
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        type=str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default="distilbert",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "Which model to train. Options: 'distilbert', 'bert', 'roberta'."
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--num_epochs",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=1,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Number of epochs."
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    parser.add_argument(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        "--learning_rate",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        type=float,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        default=5e-6,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        help=(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "Learning rate."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    args = parser.parse_args()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Load model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    torch.manual_seed(123)
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if args.model == "distilbert":
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model = AutoModelForSequenceClassification.from_pretrained(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "distilbert-base-uncased", num_labels=2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model.out_head = torch.nn.Linear(in_features=768, out_features=2)
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = False
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if args.trainable_layers == "last_layer":
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            for param in model.out_head.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "last_block":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.pre_classifier.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.distilbert.transformer.layer[-1].parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "all":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("Invalid --trainable_layers argument.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    elif args.model == "bert":
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model = AutoModelForSequenceClassification.from_pretrained(
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            "bert-base-uncased", num_labels=2
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        model.classifier = torch.nn.Linear(in_features=768, out_features=2)
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = False
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if args.trainable_layers == "last_layer":
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            for param in model.classifier.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "last_block":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.classifier.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            for param in model.bert.pooler.dense.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.bert.encoder.layer[-1].parameters():
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "all":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("Invalid --trainable_layers argument.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    elif args.model == "roberta":
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model = AutoModelForSequenceClassification.from_pretrained(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "FacebookAI/roberta-large", num_labels=2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model.classifier.out_proj = torch.nn.Linear(in_features=1024, out_features=2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            param.requires_grad = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if args.trainable_layers == "last_layer":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.classifier.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "last_block":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.classifier.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.roberta.encoder.layer[-1].parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif args.trainable_layers == "all":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for param in model.parameters():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                param.requires_grad = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("Invalid --trainable_layers argument.")
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-large")
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-27 08:23:25 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Selected --model {args.model} not supported.")
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    model.to(device)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-28 13:57:36 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    model.eval()
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Instantiate dataloaders
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-12 09:36:35 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    base_path = Path(".")
							 | 
						
					
						
							
								
									
										
										
										
											2024-05-12 09:27:38 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if args.use_attention_mask.lower() == "true":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        use_attention_mask = True
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    elif args.use_attention_mask.lower() == "false":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        use_attention_mask = False
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("Invalid argument for `use_attention_mask`.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_dataset = IMDBDataset(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        base_path / "train.csv",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length=256,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        tokenizer=tokenizer,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pad_token_id=tokenizer.pad_token_id,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        use_attention_mask=use_attention_mask
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_dataset = IMDBDataset(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        base_path / "validation.csv",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length=256,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        tokenizer=tokenizer,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pad_token_id=tokenizer.pad_token_id,
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 10:31:54 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        use_attention_mask=use_attention_mask
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_dataset = IMDBDataset(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        base_path / "test.csv",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        max_length=256,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        tokenizer=tokenizer,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pad_token_id=tokenizer.pad_token_id,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        use_attention_mask=use_attention_mask
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    num_workers = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    batch_size = 8
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=train_dataset,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        batch_size=batch_size,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        shuffle=True,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=True,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=val_dataset,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        batch_size=batch_size,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_loader = DataLoader(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dataset=test_dataset,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        batch_size=batch_size,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        num_workers=num_workers,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        drop_last=False,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Train model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    start_time = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    torch.manual_seed(123)
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-26 16:27:09 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=0.1)
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        model, train_loader, val_loader, optimizer, device,
							 | 
						
					
						
							
								
									
										
										
										
											2024-08-23 08:40:40 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        num_epochs=args.num_epochs, eval_freq=50, eval_iter=20,
							 | 
						
					
						
							
								
									
										
										
										
											2024-06-12 03:59:48 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        max_steps=None
							 | 
						
					
						
							
								
									
										
										
										
											2024-04-25 07:20:53 -05:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    end_time = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    execution_time_minutes = (end_time - start_time) / 60
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Training completed in {execution_time_minutes:.2f} minutes.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # Evaluate model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ###############################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print("\nEvaluating on the full datasets ...\n")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    train_accuracy = calc_accuracy_loader(train_loader, model, device)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    val_accuracy = calc_accuracy_loader(val_loader, model, device)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    test_accuracy = calc_accuracy_loader(test_loader, model, device)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Training accuracy: {train_accuracy*100:.2f}%")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Validation accuracy: {val_accuracy*100:.2f}%")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print(f"Test accuracy: {test_accuracy*100:.2f}%")
							 |