mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
	
	
		
			171 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			171 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||
|  | # Source for "Build a Large Language Model From Scratch" | ||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||
|  | # | ||
|  | # This file collects all the relevant code that we covered thus far | ||
|  | # throughout Chapters 2-5. | ||
|  | 
 | ||
|  | 
 | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 3 | ||
|  | ##################################### | ||
|  | 
 | ||
|  | 
 | ||
|  | class MultiHeadAttention(nn.Module): | ||
|  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | ||
|  |         super().__init__() | ||
|  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | ||
|  | 
 | ||
|  |         self.d_out = d_out | ||
|  |         self.num_heads = num_heads | ||
|  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | ||
|  | 
 | ||
|  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | ||
|  |         self.dropout = nn.Dropout(dropout) | ||
|  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         b, num_tokens, d_in = x.shape | ||
|  | 
 | ||
|  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | ||
|  |         queries = self.W_query(x) | ||
|  |         values = self.W_value(x) | ||
|  | 
 | ||
|  |         # We implicitly split the matrix by adding a `num_heads` dimension | ||
|  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | ||
|  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  | 
 | ||
|  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | ||
|  |         keys = keys.transpose(1, 2) | ||
|  |         queries = queries.transpose(1, 2) | ||
|  |         values = values.transpose(1, 2) | ||
|  | 
 | ||
|  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | ||
|  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | ||
|  | 
 | ||
|  |         # Original mask truncated to the number of tokens and converted to boolean | ||
|  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | ||
|  | 
 | ||
|  |         # Use the mask to fill attention scores | ||
|  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | ||
|  | 
 | ||
|  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | ||
|  |         attn_weights = self.dropout(attn_weights) | ||
|  | 
 | ||
|  |         # Shape: (b, num_tokens, num_heads, head_dim) | ||
|  |         context_vec = (attn_weights @ values).transpose(1, 2) | ||
|  | 
 | ||
|  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | ||
|  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | ||
|  |         context_vec = self.out_proj(context_vec)  # optional projection | ||
|  | 
 | ||
|  |         return context_vec | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 4 | ||
|  | ##################################### | ||
|  | class LayerNorm(nn.Module): | ||
|  |     def __init__(self, emb_dim): | ||
|  |         super().__init__() | ||
|  |         self.eps = 1e-5 | ||
|  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | ||
|  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         mean = x.mean(dim=-1, keepdim=True) | ||
|  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | ||
|  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | ||
|  |         return self.scale * norm_x + self.shift | ||
|  | 
 | ||
|  | 
 | ||
|  | class GELU(nn.Module): | ||
|  |     def __init__(self): | ||
|  |         super().__init__() | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return 0.5 * x * (1 + torch.tanh( | ||
|  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | ||
|  |             (x + 0.044715 * torch.pow(x, 3)) | ||
|  |         )) | ||
|  | 
 | ||
|  | 
 | ||
|  | class FeedForward(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.layers = nn.Sequential( | ||
|  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | ||
|  |             GELU(), | ||
|  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | ||
|  |         ) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return self.layers(x) | ||
|  | 
 | ||
|  | 
 | ||
|  | class TransformerBlock(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.att = MultiHeadAttention( | ||
|  |             d_in=cfg["emb_dim"], | ||
|  |             d_out=cfg["emb_dim"], | ||
|  |             context_length=cfg["context_length"], | ||
|  |             num_heads=cfg["n_heads"], | ||
|  |             dropout=cfg["drop_rate"], | ||
|  |             qkv_bias=cfg["qkv_bias"]) | ||
|  |         self.ff = FeedForward(cfg) | ||
|  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         # Shortcut connection for attention block | ||
|  |         shortcut = x | ||
|  |         x = self.norm1(x) | ||
|  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         # Shortcut connection for feed-forward block | ||
|  |         shortcut = x | ||
|  |         x = self.norm2(x) | ||
|  |         x = self.ff(x) | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         return x | ||
|  | 
 | ||
|  | 
 | ||
|  | class GPTModel(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | ||
|  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | ||
|  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |         self.trf_blocks = nn.Sequential( | ||
|  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | ||
|  | 
 | ||
|  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | ||
|  | 
 | ||
|  |     def forward(self, in_idx): | ||
|  |         batch_size, seq_len = in_idx.shape | ||
|  |         tok_embeds = self.tok_emb(in_idx) | ||
|  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | ||
|  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_emb(x) | ||
|  |         x = self.trf_blocks(x) | ||
|  |         x = self.final_norm(x) | ||
|  |         logits = self.out_head(x) | ||
|  |         return logits |