mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
	
	
		
			280 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			280 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||
|  | # Source for "Build a Large Language Model From Scratch" | ||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||
|  | # | ||
|  | # This file collects all the relevant code that we covered thus far | ||
|  | # throughout Chapters 2-4. | ||
|  | # This file can be run as a standalone script. | ||
|  | 
 | ||
|  | import tiktoken | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | from torch.utils.data import Dataset, DataLoader | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 2 | ||
|  | ##################################### | ||
|  | 
 | ||
|  | 
 | ||
|  | class GPTDatasetV1(Dataset): | ||
|  |     def __init__(self, txt, tokenizer, max_length, stride): | ||
|  |         self.input_ids = [] | ||
|  |         self.target_ids = [] | ||
|  | 
 | ||
|  |         # Tokenize the entire text | ||
|  |         token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) | ||
|  | 
 | ||
|  |         # Use a sliding window to chunk the book into overlapping sequences of max_length | ||
|  |         for i in range(0, len(token_ids) - max_length, stride): | ||
|  |             input_chunk = token_ids[i:i + max_length] | ||
|  |             target_chunk = token_ids[i + 1: i + max_length + 1] | ||
|  |             self.input_ids.append(torch.tensor(input_chunk)) | ||
|  |             self.target_ids.append(torch.tensor(target_chunk)) | ||
|  | 
 | ||
|  |     def __len__(self): | ||
|  |         return len(self.input_ids) | ||
|  | 
 | ||
|  |     def __getitem__(self, idx): | ||
|  |         return self.input_ids[idx], self.target_ids[idx] | ||
|  | 
 | ||
|  | 
 | ||
|  | def create_dataloader_v1(txt, batch_size=4, max_length=256, | ||
|  |                          stride=128, shuffle=True, drop_last=True, num_workers=0): | ||
|  |     # Initialize the tokenizer | ||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||
|  | 
 | ||
|  |     # Create dataset | ||
|  |     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | ||
|  | 
 | ||
|  |     # Create dataloader | ||
|  |     dataloader = DataLoader( | ||
|  |         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) | ||
|  | 
 | ||
|  |     return dataloader | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 3 | ||
|  | ##################################### | ||
|  | class MultiHeadAttention(nn.Module): | ||
|  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | ||
|  |         super().__init__() | ||
|  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | ||
|  | 
 | ||
|  |         self.d_out = d_out | ||
|  |         self.num_heads = num_heads | ||
|  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | ||
|  | 
 | ||
|  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | ||
|  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | ||
|  |         self.dropout = nn.Dropout(dropout) | ||
|  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         b, num_tokens, d_in = x.shape | ||
|  | 
 | ||
|  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | ||
|  |         queries = self.W_query(x) | ||
|  |         values = self.W_value(x) | ||
|  | 
 | ||
|  |         # We implicitly split the matrix by adding a `num_heads` dimension | ||
|  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | ||
|  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | ||
|  | 
 | ||
|  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | ||
|  |         keys = keys.transpose(1, 2) | ||
|  |         queries = queries.transpose(1, 2) | ||
|  |         values = values.transpose(1, 2) | ||
|  | 
 | ||
|  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | ||
|  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | ||
|  | 
 | ||
|  |         # Original mask truncated to the number of tokens and converted to boolean | ||
|  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | ||
|  | 
 | ||
|  |         # Use the mask to fill attention scores | ||
|  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | ||
|  | 
 | ||
|  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | ||
|  |         attn_weights = self.dropout(attn_weights) | ||
|  | 
 | ||
|  |         # Shape: (b, num_tokens, num_heads, head_dim) | ||
|  |         context_vec = (attn_weights @ values).transpose(1, 2) | ||
|  | 
 | ||
|  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | ||
|  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | ||
|  |         context_vec = self.out_proj(context_vec)  # optional projection | ||
|  | 
 | ||
|  |         return context_vec | ||
|  | 
 | ||
|  | 
 | ||
|  | ##################################### | ||
|  | # Chapter 4 | ||
|  | ##################################### | ||
|  | class LayerNorm(nn.Module): | ||
|  |     def __init__(self, emb_dim): | ||
|  |         super().__init__() | ||
|  |         self.eps = 1e-5 | ||
|  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | ||
|  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         mean = x.mean(dim=-1, keepdim=True) | ||
|  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | ||
|  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | ||
|  |         return self.scale * norm_x + self.shift | ||
|  | 
 | ||
|  | 
 | ||
|  | class GELU(nn.Module): | ||
|  |     def __init__(self): | ||
|  |         super().__init__() | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return 0.5 * x * (1 + torch.tanh( | ||
|  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | ||
|  |             (x + 0.044715 * torch.pow(x, 3)) | ||
|  |         )) | ||
|  | 
 | ||
|  | 
 | ||
|  | class FeedForward(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.layers = nn.Sequential( | ||
|  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | ||
|  |             GELU(), | ||
|  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | ||
|  |         ) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         return self.layers(x) | ||
|  | 
 | ||
|  | 
 | ||
|  | class TransformerBlock(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.att = MultiHeadAttention( | ||
|  |             d_in=cfg["emb_dim"], | ||
|  |             d_out=cfg["emb_dim"], | ||
|  |             context_length=cfg["context_length"], | ||
|  |             num_heads=cfg["n_heads"], | ||
|  |             dropout=cfg["drop_rate"], | ||
|  |             qkv_bias=cfg["qkv_bias"]) | ||
|  |         self.ff = FeedForward(cfg) | ||
|  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         # Shortcut connection for attention block | ||
|  |         shortcut = x | ||
|  |         x = self.norm1(x) | ||
|  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         # Shortcut connection for feed-forward block | ||
|  |         shortcut = x | ||
|  |         x = self.norm2(x) | ||
|  |         x = self.ff(x) | ||
|  |         x = self.drop_shortcut(x) | ||
|  |         x = x + shortcut  # Add the original input back | ||
|  | 
 | ||
|  |         return x | ||
|  | 
 | ||
|  | 
 | ||
|  | class GPTModel(nn.Module): | ||
|  |     def __init__(self, cfg): | ||
|  |         super().__init__() | ||
|  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | ||
|  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | ||
|  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | ||
|  | 
 | ||
|  |         self.trf_blocks = nn.Sequential( | ||
|  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | ||
|  | 
 | ||
|  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | ||
|  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | ||
|  | 
 | ||
|  |     def forward(self, in_idx): | ||
|  |         batch_size, seq_len = in_idx.shape | ||
|  |         tok_embeds = self.tok_emb(in_idx) | ||
|  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | ||
|  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | ||
|  |         x = self.drop_emb(x) | ||
|  |         x = self.trf_blocks(x) | ||
|  |         x = self.final_norm(x) | ||
|  |         logits = self.out_head(x) | ||
|  |         return logits | ||
|  | 
 | ||
|  | 
 | ||
|  | def generate_text_simple(model, idx, max_new_tokens, context_size): | ||
|  |     # idx is (B, T) array of indices in the current context | ||
|  |     for _ in range(max_new_tokens): | ||
|  | 
 | ||
|  |         # Crop current context if it exceeds the supported context size | ||
|  |         # E.g., if LLM supports only 5 tokens, and the context size is 10 | ||
|  |         # then only the last 5 tokens are used as context | ||
|  |         idx_cond = idx[:, -context_size:] | ||
|  | 
 | ||
|  |         # Get the predictions | ||
|  |         with torch.no_grad(): | ||
|  |             logits = model(idx_cond) | ||
|  | 
 | ||
|  |         # Focus only on the last time step | ||
|  |         # (batch, n_token, vocab_size) becomes (batch, vocab_size) | ||
|  |         logits = logits[:, -1, :] | ||
|  | 
 | ||
|  |         # Get the idx of the vocab entry with the highest logits value | ||
|  |         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1) | ||
|  | 
 | ||
|  |         # Append sampled index to the running sequence | ||
|  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1) | ||
|  | 
 | ||
|  |     return idx | ||
|  | 
 | ||
|  | 
 | ||
|  | if __name__ == "__main__": | ||
|  | 
 | ||
|  |     GPT_CONFIG_124M = { | ||
|  |         "vocab_size": 50257,     # Vocabulary size | ||
|  |         "context_length": 1024,  # Context length | ||
|  |         "emb_dim": 768,          # Embedding dimension | ||
|  |         "n_heads": 12,           # Number of attention heads | ||
|  |         "n_layers": 12,          # Number of layers | ||
|  |         "drop_rate": 0.1,        # Dropout rate | ||
|  |         "qkv_bias": False        # Query-Key-Value bias | ||
|  |     } | ||
|  | 
 | ||
|  |     torch.manual_seed(123) | ||
|  |     model = GPTModel(GPT_CONFIG_124M) | ||
|  |     model.eval()  # disable dropout | ||
|  | 
 | ||
|  |     start_context = "Hello, I am" | ||
|  | 
 | ||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||
|  |     encoded = tokenizer.encode(start_context) | ||
|  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0) | ||
|  | 
 | ||
|  |     print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") | ||
|  |     print("\nInput text:", start_context) | ||
|  |     print("Encoded input text:", encoded) | ||
|  |     print("encoded_tensor.shape:", encoded_tensor.shape) | ||
|  | 
 | ||
|  |     out = generate_text_simple( | ||
|  |         model=model, | ||
|  |         idx=encoded_tensor, | ||
|  |         max_new_tokens=10, | ||
|  |         context_size=GPT_CONFIG_124M["context_length"] | ||
|  |     ) | ||
|  |     decoded_text = tokenizer.decode(out.squeeze(0).tolist()) | ||
|  | 
 | ||
|  |     print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}") | ||
|  |     print("\nOutput:", out) | ||
|  |     print("Output length:", len(out[0])) | ||
|  |     print("Output text:", decoded_text) |