228 lines
7.2 KiB
Python
Raw Normal View History

import io
import os
import sys
import types
import nbformat
import torch
import pytest
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
@pytest.fixture(scope="module")
def notebook():
def import_definitions_from_notebook(notebooks):
imported_modules = {}
for fullname, names in notebooks.items():
# Get the directory of the current test file
current_dir = os.path.dirname(__file__)
path = os.path.join(current_dir, "..", fullname + ".ipynb")
path = os.path.normpath(path)
# Load the notebook
if not os.path.exists(path):
raise FileNotFoundError(f"Notebook file not found at: {path}")
with io.open(path, "r", encoding="utf-8") as f:
nb = nbformat.read(f, as_version=4)
# Create a module to store the imported functions and classes
mod = types.ModuleType(fullname)
sys.modules[fullname] = mod
# Go through the notebook cells and only execute function or class definitions
for cell in nb.cells:
if cell.cell_type == "code":
cell_code = cell.source
for name in names:
# Check for function or class definitions
if f"def {name}" in cell_code or f"class {name}" in cell_code:
exec(cell_code, mod.__dict__)
imported_modules[fullname] = mod
return imported_modules
notebooks = {
"converting-gpt-to-llama2": ["SiLU", "RMSNorm", "precompute_rope_params", "compute_rope"],
"converting-llama2-to-llama3": ["precompute_rope_params"]
}
return import_definitions_from_notebook(notebooks)
@pytest.fixture(autouse=True)
def set_seed():
torch.manual_seed(123)
def test_rope_llama2(notebook):
this_nb = notebook["converting-gpt-to-llama2"]
# Settings
batch_size = 1
context_len = 4096
num_heads = 4
head_dim = 16
# Instantiate RoPE parameters
cos, sin = this_nb.precompute_rope_params(head_dim=head_dim, context_length=context_len)
# Dummy query and key tensors
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = this_nb.compute_rope(queries, cos, sin)
keys_rot = this_nb.compute_rope(keys, cos, sin)
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=10_000
)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
def test_rope_llama3(notebook):
nb1 = notebook["converting-gpt-to-llama2"]
nb2 = notebook["converting-llama2-to-llama3"]
# Settings
batch_size = 1
context_len = 8192
num_heads = 4
head_dim = 16
theta_base = 50_000
# Instantiate RoPE parameters
cos, sin = nb2.precompute_rope_params(
head_dim=head_dim,
context_length=context_len,
theta_base=theta_base
)
# Dummy query and key tensors
torch.manual_seed(123)
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=theta_base
)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
def test_rope_llama3_12(notebook):
nb1 = notebook["converting-gpt-to-llama2"]
nb2 = notebook["converting-llama2-to-llama3"]
# Settings
batch_size = 1
context_len = 8192
num_heads = 4
head_dim = 16
rope_theta = 50_000
rope_config = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
# Instantiate RoPE parameters
cos, sin = nb2.precompute_rope_params(
head_dim=head_dim,
theta_base=rope_theta,
context_length=context_len,
freq_config=rope_config,
)
# Dummy query and key tensors
torch.manual_seed(123)
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)
hf_rope_params = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
class RoPEConfig:
rope_type = "llama3"
rope_scaling = hf_rope_params
factor = 1.0
dim: int = head_dim
rope_theta = 50_000
max_position_embeddings: int = 8192
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
def test_silu(notebook):
example_batch = torch.randn(2, 3, 4)
silu = notebook["converting-gpt-to-llama2"].SiLU()
assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))
@pytest.mark.skipif(torch.__version__ < "2.4", reason="Requires PyTorch 2.4 or newer")
def test_rmsnorm(notebook):
example_batch = torch.randn(2, 3, 4)
rms_norm = notebook["converting-gpt-to-llama2"].RMSNorm(emb_dim=example_batch.shape[-1], eps=1e-5)
rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-5)
assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))