2024-05-23 20:35:41 -05:00
|
|
|
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
2025-03-23 19:28:49 -05:00
|
|
|
|
2025-03-27 14:00:25 -05:00
|
|
|
from .ch03 import MultiHeadAttention, PyTorchMultiHeadAttention
|
2024-05-23 20:35:41 -05:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
|
|
def __init__(self, emb_dim):
|
|
|
|
super().__init__()
|
|
|
|
self.eps = 1e-5
|
|
|
|
self.scale = nn.Parameter(torch.ones(emb_dim))
|
|
|
|
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
mean = x.mean(dim=-1, keepdim=True)
|
|
|
|
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
|
|
|
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
|
|
|
return self.scale * norm_x + self.shift
|
|
|
|
|
|
|
|
|
|
|
|
class GELU(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return 0.5 * x * (1 + torch.tanh(
|
|
|
|
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
|
|
|
(x + 0.044715 * torch.pow(x, 3))
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.layers = nn.Sequential(
|
|
|
|
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
|
|
|
GELU(),
|
|
|
|
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.layers(x)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.att = MultiHeadAttention(
|
|
|
|
d_in=cfg["emb_dim"],
|
|
|
|
d_out=cfg["emb_dim"],
|
|
|
|
context_length=cfg["context_length"],
|
|
|
|
num_heads=cfg["n_heads"],
|
|
|
|
dropout=cfg["drop_rate"],
|
|
|
|
qkv_bias=cfg["qkv_bias"])
|
|
|
|
self.ff = FeedForward(cfg)
|
|
|
|
self.norm1 = LayerNorm(cfg["emb_dim"])
|
|
|
|
self.norm2 = LayerNorm(cfg["emb_dim"])
|
2025-03-23 19:28:49 -05:00
|
|
|
self.drop_resid = nn.Dropout(cfg["drop_rate"])
|
2024-05-23 20:35:41 -05:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# Shortcut connection for attention block
|
|
|
|
shortcut = x
|
|
|
|
x = self.norm1(x)
|
|
|
|
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
2025-03-23 19:28:49 -05:00
|
|
|
x = self.drop_resid(x)
|
2024-05-23 20:35:41 -05:00
|
|
|
x = x + shortcut # Add the original input back
|
|
|
|
|
|
|
|
# Shortcut connection for feed-forward block
|
|
|
|
shortcut = x
|
|
|
|
x = self.norm2(x)
|
|
|
|
x = self.ff(x)
|
2025-03-23 19:28:49 -05:00
|
|
|
x = self.drop_resid(x)
|
2024-05-23 20:35:41 -05:00
|
|
|
x = x + shortcut # Add the original input back
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class GPTModel(nn.Module):
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
|
|
|
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
|
|
|
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
|
|
|
|
|
|
|
self.trf_blocks = nn.Sequential(
|
|
|
|
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
|
|
|
|
|
|
self.final_norm = LayerNorm(cfg["emb_dim"])
|
|
|
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
|
|
|
|
|
|
|
def forward(self, in_idx):
|
|
|
|
batch_size, seq_len = in_idx.shape
|
|
|
|
tok_embeds = self.tok_emb(in_idx)
|
|
|
|
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
|
|
|
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
|
|
|
x = self.drop_emb(x)
|
|
|
|
x = self.trf_blocks(x)
|
|
|
|
x = self.final_norm(x)
|
|
|
|
logits = self.out_head(x)
|
|
|
|
return logits
|
|
|
|
|
|
|
|
|
|
|
|
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
|
|
|
# idx is (B, T) array of indices in the current context
|
|
|
|
for _ in range(max_new_tokens):
|
|
|
|
|
|
|
|
# Crop current context if it exceeds the supported context size
|
|
|
|
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
|
|
|
# then only the last 5 tokens are used as context
|
|
|
|
idx_cond = idx[:, -context_size:]
|
|
|
|
|
|
|
|
# Get the predictions
|
|
|
|
with torch.no_grad():
|
|
|
|
logits = model(idx_cond)
|
|
|
|
|
|
|
|
# Focus only on the last time step
|
|
|
|
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
|
|
|
logits = logits[:, -1, :]
|
|
|
|
|
|
|
|
# Get the idx of the vocab entry with the highest logits value
|
|
|
|
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
|
|
|
|
|
|
|
# Append sampled index to the running sequence
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
|
|
|
|
|
|
|
return idx
|
2025-03-27 14:00:25 -05:00
|
|
|
|
|
|
|
######################
|
|
|
|
# Bonus
|
|
|
|
######################
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForwardFast(nn.Module):
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.layers = nn.Sequential(
|
|
|
|
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
|
|
|
nn.GELU(approximate="tanh"),
|
|
|
|
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.layers(x)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlockFast(nn.Module):
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.att = PyTorchMultiHeadAttention(
|
|
|
|
d_in=cfg["emb_dim"],
|
|
|
|
d_out=cfg["emb_dim"],
|
|
|
|
num_heads=cfg["n_heads"],
|
|
|
|
dropout=cfg["drop_rate"],
|
|
|
|
qkv_bias=cfg["qkv_bias"])
|
|
|
|
self.ff = FeedForwardFast(cfg)
|
|
|
|
self.norm1 = nn.LayerNorm(cfg["emb_dim"])
|
|
|
|
self.norm2 = nn.LayerNorm(cfg["emb_dim"])
|
|
|
|
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# Shortcut connection for attention block
|
|
|
|
shortcut = x
|
|
|
|
x = self.norm1(x)
|
|
|
|
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
|
|
|
x = self.drop_shortcut(x)
|
|
|
|
x = x + shortcut # Add the original input back
|
|
|
|
|
|
|
|
# Shortcut connection for feed-forward block
|
|
|
|
shortcut = x
|
|
|
|
x = self.norm2(x)
|
|
|
|
x = self.ff(x)
|
|
|
|
x = self.drop_shortcut(x)
|
|
|
|
x = x + shortcut # Add the original input back
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class GPTModelFast(nn.Module):
|
|
|
|
"""
|
|
|
|
A faster variant of GPTModel optimized for training speed.
|
|
|
|
|
|
|
|
This version is only marginally faster on CPU (~1.02x) but significantly
|
|
|
|
faster on GPU (~2.05x) during training, thanks to optimized CUDA kernels
|
|
|
|
and FlashAttention support.
|
|
|
|
|
|
|
|
Key differences from the original GPTModel:
|
|
|
|
1. Uses PyTorch's built-in LayerNorm instead of a custom implementation.
|
|
|
|
2. Uses PyTorch's built-in GELU instead of a custom implementation.
|
|
|
|
3. Uses PyTorch's scaled_dot_product_attention instead of a custom MultiHeadAttention.
|
|
|
|
4. Automatically enables FlashAttention on compatible GPUs.
|
|
|
|
"""
|
|
|
|
def __init__(self, cfg):
|
|
|
|
super().__init__()
|
|
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
|
|
|
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
|
|
|
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
|
|
|
|
|
|
|
self.trf_blocks = nn.Sequential(
|
|
|
|
*[TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])])
|
|
|
|
|
|
|
|
self.final_norm = nn.LayerNorm(cfg["emb_dim"])
|
|
|
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
|
|
|
|
|
|
|
def forward(self, in_idx):
|
|
|
|
batch_size, seq_len = in_idx.shape
|
|
|
|
tok_embeds = self.tok_emb(in_idx)
|
|
|
|
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
|
|
|
x = tok_embeds + pos_embeds
|
|
|
|
x = self.drop_emb(x)
|
|
|
|
x = self.trf_blocks(x)
|
|
|
|
x = self.final_norm(x)
|
|
|
|
logits = self.out_head(x)
|
|
|
|
return logits
|