276 lines
10 KiB
Python
Raw Normal View History

2025-06-21 17:34:39 -05:00
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from .utils import KVCache # noqa: F401
from ..qwen3 import ( # noqa: F401
QWEN_CONFIG_06_B, QWEN3_CONFIG_1_7B, QWEN3_CONFIG_4B,
QWEN3_CONFIG_8B, QWEN3_CONFIG_14B, QWEN3_CONFIG_32B,
Qwen3Tokenizer, load_weights_into_qwen,
download_from_huggingface,
download_from_huggingface_from_snapshots
)
2025-06-21 17:34:39 -05:00
import torch
import torch.nn as nn
class Qwen3Model(nn.Module):
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = RMSNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
if cfg["head_dim"] is None:
head_dim = cfg["emb_dim"] // cfg["n_heads"]
else:
head_dim = cfg["head_dim"]
cos, sin = compute_rope_params(
head_dim=head_dim,
theta_base=cfg["rope_base"],
context_length=cfg["context_length"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
self.current_pos = 0 # Track current position in KV cache
2025-06-21 17:34:39 -05:00
def forward(self, in_idx, use_cache=False, cache=None):
2025-06-21 17:34:39 -05:00
# Forward pass
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
num_tokens = x.shape[1]
if use_cache:
pos_start = self.current_pos
pos_end = pos_start + num_tokens
self.current_pos = pos_end
mask = torch.triu(
torch.ones(pos_end, pos_end, device=x.device, dtype=torch.bool), diagonal=1
)[pos_start:pos_end, :pos_end]
else:
pos_start = 0 # Not strictly necessary but helps torch.compile
mask = torch.triu(
torch.ones(num_tokens, num_tokens, device=x.device, dtype=torch.bool), diagonal=1
)
# Shape (1, 1, num_tokens, num_tokens) to broadcast across batch and heads
mask = mask[None, None, :, :]
next_cache = []
for i, block in enumerate(self.trf_blocks):
blk_cache = cache.get(i) if cache else None
x, new_blk_cache = block(x, mask, self.cos, self.sin,
use_cache=use_cache,
start_pos=pos_start,
cache=blk_cache)
if cache:
cache.update(i, new_blk_cache)
next_cache.append(new_blk_cache)
2025-06-21 17:34:39 -05:00
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits
def reset_kv_cache(self):
self.current_pos = 0
2025-06-21 17:34:39 -05:00
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttention(
d_in=cfg["emb_dim"],
num_heads=cfg["n_heads"],
head_dim=cfg["head_dim"],
num_kv_groups=cfg["n_kv_groups"],
qk_norm=cfg["qk_norm"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6)
self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6)
def forward(self, x, mask, cos, sin, use_cache=False, start_pos=0, cache=None):
2025-06-21 17:34:39 -05:00
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x, next_cache = self.att(x, mask, cos, sin, use_cache=use_cache, start_pos=start_pos, cache=cache) # Shape [batch_size, num_tokens, emb_size]
2025-06-21 17:34:39 -05:00
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x, next_cache
2025-06-21 17:34:39 -05:00
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
def forward(self, x):
x_fc1 = self.fc1(x)
x_fc2 = self.fc2(x)
x = nn.functional.silu(x_fc1) * x_fc2
return self.fc3(x)
class GroupedQueryAttention(nn.Module):
def __init__(
self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None
2025-06-21 17:34:39 -05:00
):
super().__init__()
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.num_heads = num_heads
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
if head_dim is None:
assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set"
head_dim = d_in // num_heads
self.head_dim = head_dim
self.d_out = num_heads * head_dim
self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype)
self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype)
if qk_norm:
self.q_norm = RMSNorm(head_dim, eps=1e-6)
self.k_norm = RMSNorm(head_dim, eps=1e-6)
else:
self.q_norm = self.k_norm = None
def forward(self, x, mask, cos, sin, use_cache=False, start_pos=0, cache=None):
2025-06-21 17:34:39 -05:00
b, num_tokens, _ = x.shape
# Apply projections
queries = self.W_query(x) # (b, num_tokens, num_heads * head_dim)
keys = self.W_key(x) # (b, num_tokens, num_kv_groups * head_dim)
values = self.W_value(x) # (b, num_tokens, num_kv_groups * head_dim)
2025-06-21 17:34:39 -05:00
# Reshape
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
keys_new = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
values_new = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
2025-06-21 17:34:39 -05:00
# Optional normalization
if self.q_norm:
queries = self.q_norm(queries)
if self.k_norm:
keys_new = self.k_norm(keys_new)
# Apply RoPE
queries = apply_rope(queries, cos, sin, offset=start_pos)
keys_new = apply_rope(keys_new, cos, sin, offset=start_pos)
2025-06-21 17:34:39 -05:00
if use_cache:
if cache is None:
keys = keys_new
values = values_new
else:
prev_k, prev_v = cache
keys = torch.cat([prev_k, keys_new], dim=2)
values = torch.cat([prev_v, values_new], dim=2)
next_cache = (keys, values)
2025-06-21 17:34:39 -05:00
else:
keys, values = keys_new, values_new
next_cache = None
# Expand K and V to match number of heads
keys = keys.repeat_interleave(self.group_size, dim=1)
values = values.repeat_interleave(self.group_size, dim=1)
2025-06-21 17:34:39 -05:00
# Attention
attn_scores = queries @ keys.transpose(2, 3)
attn_scores = attn_scores.masked_fill(mask, -torch.inf)
2025-06-21 17:34:39 -05:00
attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1)
context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(context), next_cache
2025-06-21 17:34:39 -05:00
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32):
assert head_dim % 2 == 0, "Embedding dimension must be even"
# Compute the inverse frequencies
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
# Generate position indices
positions = torch.arange(context_length, dtype=dtype)
# Compute the angles
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
# Expand angles to match the head_dim
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
# Precompute sine and cosine
cos = torch.cos(angles)
sin = torch.sin(angles)
return cos, sin
def apply_rope(x, cos, sin, offset=0):
2025-06-21 17:34:39 -05:00
# x: (batch_size, num_heads, seq_len, head_dim)
batch_size, num_heads, seq_len, head_dim = x.shape
assert head_dim % 2 == 0, "Head dimension must be even"
# Split x into first half and second half
x1 = x[..., : head_dim // 2] # First half
x2 = x[..., head_dim // 2:] # Second half
# Adjust sin and cos shapes
cos = cos[offset:offset + seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
sin = sin[offset:offset + seq_len, :].unsqueeze(0).unsqueeze(0)
2025-06-21 17:34:39 -05:00
# Apply the rotary transformation
rotated = torch.cat((-x2, x1), dim=-1)
x_rotated = (x * cos) + (rotated * sin)
# It's ok to use lower-precision after applying cos and sin rotation
return x_rotated.to(dtype=x.dtype)
class RMSNorm(nn.Module):
def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True):
super().__init__()
self.eps = eps
self.qwen3_compatible = qwen3_compatible
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None
def forward(self, x):
input_dtype = x.dtype
if self.qwen3_compatible:
x = x.to(torch.float32)
variance = x.pow(2).mean(dim=-1, keepdim=True)
norm_x = x * torch.rsqrt(variance + self.eps)
norm_x = norm_x * self.scale
if self.shift is not None:
norm_x = norm_x + self.shift
return norm_x.to(input_dtype)