| 
									
										
										
										
											2024-05-05 12:05:17 -05:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # This file collects all the relevant code that we covered thus far | 
					
						
							|  |  |  | # throughout Chapters 2-6. | 
					
						
							|  |  |  | # This file can be run as a standalone script. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | import urllib | 
					
						
							|  |  |  | import zipfile | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import matplotlib.pyplot as plt | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import pandas as pd | 
					
						
							|  |  |  | import tiktoken | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from torch.utils.data import Dataset, DataLoader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 2 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTDatasetV1(Dataset): | 
					
						
							|  |  |  |     def __init__(self, txt, tokenizer, max_length, stride): | 
					
						
							|  |  |  |         self.tokenizer = tokenizer | 
					
						
							|  |  |  |         self.input_ids = [] | 
					
						
							|  |  |  |         self.target_ids = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Tokenize the entire text | 
					
						
							|  |  |  |         token_ids = tokenizer.encode(txt) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Use a sliding window to chunk the book into overlapping sequences of max_length | 
					
						
							|  |  |  |         for i in range(0, len(token_ids) - max_length, stride): | 
					
						
							|  |  |  |             input_chunk = token_ids[i:i + max_length] | 
					
						
							|  |  |  |             target_chunk = token_ids[i + 1: i + max_length + 1] | 
					
						
							|  |  |  |             self.input_ids.append(torch.tensor(input_chunk)) | 
					
						
							|  |  |  |             self.target_ids.append(torch.tensor(target_chunk)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __len__(self): | 
					
						
							|  |  |  |         return len(self.input_ids) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getitem__(self, idx): | 
					
						
							|  |  |  |         return self.input_ids[idx], self.target_ids[idx] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def create_dataloader_v1(txt, batch_size=4, max_length=256, | 
					
						
							|  |  |  |                          stride=128, shuffle=True, drop_last=True): | 
					
						
							|  |  |  |     # Initialize the tokenizer | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataset | 
					
						
							|  |  |  |     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataloader | 
					
						
							|  |  |  |     dataloader = DataLoader( | 
					
						
							|  |  |  |         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return dataloader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 3 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | class MultiHeadAttention(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.d_out = d_out | 
					
						
							|  |  |  |         self.num_heads = num_heads | 
					
						
							|  |  |  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | 
					
						
							|  |  |  |         self.dropout = nn.Dropout(dropout) | 
					
						
							|  |  |  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         b, num_tokens, d_in = x.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | 
					
						
							|  |  |  |         queries = self.W_query(x) | 
					
						
							|  |  |  |         values = self.W_value(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # We implicitly split the matrix by adding a `num_heads` dimension | 
					
						
							|  |  |  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | 
					
						
							|  |  |  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | 
					
						
							|  |  |  |         keys = keys.transpose(1, 2) | 
					
						
							|  |  |  |         queries = queries.transpose(1, 2) | 
					
						
							|  |  |  |         values = values.transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | 
					
						
							|  |  |  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Original mask truncated to the number of tokens and converted to boolean | 
					
						
							|  |  |  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Use the mask to fill attention scores | 
					
						
							|  |  |  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | 
					
						
							|  |  |  |         attn_weights = self.dropout(attn_weights) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shape: (b, num_tokens, num_heads, head_dim) | 
					
						
							|  |  |  |         context_vec = (attn_weights @ values).transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | 
					
						
							|  |  |  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | 
					
						
							|  |  |  |         context_vec = self.out_proj(context_vec)  # optional projection | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return context_vec | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 4 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | class LayerNorm(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, emb_dim): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.eps = 1e-5 | 
					
						
							|  |  |  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | 
					
						
							|  |  |  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         mean = x.mean(dim=-1, keepdim=True) | 
					
						
							|  |  |  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | 
					
						
							|  |  |  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | 
					
						
							|  |  |  |         return self.scale * norm_x + self.shift | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GELU(nn.Module): | 
					
						
							|  |  |  |     def __init__(self): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         return 0.5 * x * (1 + torch.tanh( | 
					
						
							|  |  |  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | 
					
						
							|  |  |  |             (x + 0.044715 * torch.pow(x, 3)) | 
					
						
							|  |  |  |         )) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FeedForward(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.layers = nn.Sequential( | 
					
						
							|  |  |  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | 
					
						
							|  |  |  |             GELU(), | 
					
						
							|  |  |  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         return self.layers(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TransformerBlock(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.att = MultiHeadAttention( | 
					
						
							|  |  |  |             d_in=cfg["emb_dim"], | 
					
						
							|  |  |  |             d_out=cfg["emb_dim"], | 
					
						
							|  |  |  |             context_length=cfg["context_length"], | 
					
						
							|  |  |  |             num_heads=cfg["n_heads"], | 
					
						
							|  |  |  |             dropout=cfg["drop_rate"], | 
					
						
							|  |  |  |             qkv_bias=cfg["qkv_bias"]) | 
					
						
							|  |  |  |         self.ff = FeedForward(cfg) | 
					
						
							|  |  |  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_resid = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         # Shortcut connection for attention block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm1(x) | 
					
						
							|  |  |  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_resid(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shortcut connection for feed-forward block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm2(x) | 
					
						
							|  |  |  |         x = self.ff(x) | 
					
						
							|  |  |  |         x = self.drop_resid(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTModel(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.trf_blocks = nn.Sequential( | 
					
						
							|  |  |  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, in_idx): | 
					
						
							|  |  |  |         batch_size, seq_len = in_idx.shape | 
					
						
							|  |  |  |         tok_embeds = self.tok_emb(in_idx) | 
					
						
							|  |  |  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | 
					
						
							|  |  |  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_emb(x) | 
					
						
							|  |  |  |         x = self.trf_blocks(x) | 
					
						
							|  |  |  |         x = self.final_norm(x) | 
					
						
							|  |  |  |         logits = self.out_head(x) | 
					
						
							|  |  |  |         return logits | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def generate_text_simple(model, idx, max_new_tokens, context_size): | 
					
						
							|  |  |  |     # idx is (B, T) array of indices in the current context | 
					
						
							|  |  |  |     for _ in range(max_new_tokens): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Crop current context if it exceeds the supported context size | 
					
						
							|  |  |  |         # E.g., if LLM supports only 5 tokens, and the context size is 10 | 
					
						
							|  |  |  |         # then only the last 5 tokens are used as context | 
					
						
							|  |  |  |         idx_cond = idx[:, -context_size:] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Get the predictions | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             logits = model(idx_cond) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Focus only on the last time step | 
					
						
							|  |  |  |         # (batch, n_token, vocab_size) becomes (batch, vocab_size) | 
					
						
							|  |  |  |         logits = logits[:, -1, :] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Get the idx of the vocab entry with the highest logits value | 
					
						
							|  |  |  |         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Append sampled index to the running sequence | 
					
						
							|  |  |  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return idx | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 5 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | def assign(left, right): | 
					
						
							|  |  |  |     if left.shape != right.shape: | 
					
						
							|  |  |  |         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | 
					
						
							|  |  |  |     return torch.nn.Parameter(torch.tensor(right)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_weights_into_gpt(gpt, params): | 
					
						
							|  |  |  |     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | 
					
						
							|  |  |  |     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for b in range(len(params["blocks"])): | 
					
						
							|  |  |  |         q_w, k_w, v_w = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.weight, q_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.weight, k_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.weight, v_w.T) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q_b, k_b, v_b = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.bias, q_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.bias, k_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.bias, v_b) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.weight, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.bias, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | 
					
						
							|  |  |  |     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | 
					
						
							|  |  |  |     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def text_to_token_ids(text, tokenizer): | 
					
						
							|  |  |  |     encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'}) | 
					
						
							|  |  |  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension | 
					
						
							|  |  |  |     return encoded_tensor | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def token_ids_to_text(token_ids, tokenizer): | 
					
						
							|  |  |  |     flat = token_ids.squeeze(0)  # remove batch dimension | 
					
						
							|  |  |  |     return tokenizer.decode(flat.tolist()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_loader(data_loader, model, device, num_batches=None): | 
					
						
							|  |  |  |     total_loss = 0. | 
					
						
							|  |  |  |     if len(data_loader) == 0: | 
					
						
							|  |  |  |         return float("nan") | 
					
						
							|  |  |  |     elif num_batches is None: | 
					
						
							|  |  |  |         num_batches = len(data_loader) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         # Reduce the number of batches to match the total number of batches in the data loader | 
					
						
							|  |  |  |         # if num_batches exceeds the number of batches in the data loader | 
					
						
							|  |  |  |         num_batches = min(num_batches, len(data_loader)) | 
					
						
							|  |  |  |     for i, (input_batch, target_batch) in enumerate(data_loader): | 
					
						
							|  |  |  |         if i < num_batches: | 
					
						
							|  |  |  |             loss = calc_loss_batch(input_batch, target_batch, model, device) | 
					
						
							|  |  |  |             total_loss += loss.item() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  |     return total_loss / num_batches | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def evaluate_model(model, train_loader, val_loader, device, eval_iter): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |     model.train() | 
					
						
							|  |  |  |     return train_loss, val_loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 6 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_and_unzip(url, zip_path, extracted_path, data_file_path): | 
					
						
							|  |  |  |     if data_file_path.exists(): | 
					
						
							|  |  |  |         print(f"{data_file_path} already exists. Skipping download and extraction.") | 
					
						
							|  |  |  |         return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Downloading the file | 
					
						
							|  |  |  |     with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |         with open(zip_path, "wb") as out_file: | 
					
						
							|  |  |  |             out_file.write(response.read()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Unzipping the file | 
					
						
							|  |  |  |     with zipfile.ZipFile(zip_path, "r") as zip_ref: | 
					
						
							|  |  |  |         zip_ref.extractall(extracted_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Add .tsv file extension | 
					
						
							|  |  |  |     original_file_path = Path(extracted_path) / "SMSSpamCollection" | 
					
						
							|  |  |  |     os.rename(original_file_path, data_file_path) | 
					
						
							|  |  |  |     print(f"File downloaded and saved as {data_file_path}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def create_balanced_dataset(df): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Count the instances of "spam" | 
					
						
							|  |  |  |     num_spam = df[df["Label"] == "spam"].shape[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Randomly sample "ham' instances to match the number of 'spam' instances | 
					
						
							|  |  |  |     ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Combine ham "subset" with "spam" | 
					
						
							|  |  |  |     balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return balanced_df | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def random_split(df, train_frac, validation_frac): | 
					
						
							|  |  |  |     # Shuffle the entire DataFrame | 
					
						
							|  |  |  |     df = df.sample(frac=1, random_state=123).reset_index(drop=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Calculate split indices | 
					
						
							|  |  |  |     train_end = int(len(df) * train_frac) | 
					
						
							|  |  |  |     validation_end = train_end + int(len(df) * validation_frac) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Split the DataFrame | 
					
						
							|  |  |  |     train_df = df[:train_end] | 
					
						
							|  |  |  |     validation_df = df[train_end:validation_end] | 
					
						
							|  |  |  |     test_df = df[validation_end:] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_df, validation_df, test_df | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SpamDataset(Dataset): | 
					
						
							|  |  |  |     def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256): | 
					
						
							|  |  |  |         self.data = pd.read_csv(csv_file) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Pre-tokenize texts | 
					
						
							|  |  |  |         self.encoded_texts = [ | 
					
						
							|  |  |  |             tokenizer.encode(text) for text in self.data["Text"] | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if max_length is None: | 
					
						
							|  |  |  |             self.max_length = self._longest_encoded_length() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.max_length = max_length | 
					
						
							|  |  |  |             # Truncate sequences if they are longer than max_length | 
					
						
							|  |  |  |             self.encoded_texts = [ | 
					
						
							|  |  |  |                 encoded_text[:self.max_length] | 
					
						
							|  |  |  |                 for encoded_text in self.encoded_texts | 
					
						
							|  |  |  |             ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Pad sequences to the longest sequence | 
					
						
							|  |  |  |         self.encoded_texts = [ | 
					
						
							|  |  |  |             encoded_text + [pad_token_id] * (self.max_length - len(encoded_text)) | 
					
						
							|  |  |  |             for encoded_text in self.encoded_texts | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getitem__(self, index): | 
					
						
							|  |  |  |         encoded = self.encoded_texts[index] | 
					
						
							|  |  |  |         label = self.data.iloc[index]["Label"] | 
					
						
							|  |  |  |         return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __len__(self): | 
					
						
							|  |  |  |         return len(self.data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _longest_encoded_length(self): | 
					
						
							|  |  |  |         max_length = 0 | 
					
						
							|  |  |  |         for encoded_text in self.encoded_texts: | 
					
						
							|  |  |  |             encoded_length = len(encoded_text) | 
					
						
							|  |  |  |             if encoded_length > max_length: | 
					
						
							|  |  |  |                 max_length = encoded_length | 
					
						
							|  |  |  |         return max_length | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | @torch.no_grad()  # Disable gradient tracking for efficiency | 
					
						
							|  |  |  | def calc_accuracy_loader(data_loader, model, device, num_batches=None): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     correct_predictions, num_examples = 0, 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if num_batches is None: | 
					
						
							|  |  |  |         num_batches = len(data_loader) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         num_batches = min(num_batches, len(data_loader)) | 
					
						
							|  |  |  |     for i, (input_batch, target_batch) in enumerate(data_loader): | 
					
						
							|  |  |  |         if i < num_batches: | 
					
						
							|  |  |  |             input_batch, target_batch = input_batch.to(device), target_batch.to(device) | 
					
						
							| 
									
										
										
										
											2024-05-05 12:21:10 -05:00
										 |  |  |             logits = model(input_batch)[:, -1, :]  # Logits of last output token | 
					
						
							| 
									
										
										
										
											2024-05-05 12:05:17 -05:00
										 |  |  |             predicted_labels = torch.argmax(logits, dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             num_examples += predicted_labels.shape[0] | 
					
						
							|  |  |  |             correct_predictions += (predicted_labels == target_batch).sum().item() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  |     return correct_predictions / num_examples | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_batch(input_batch, target_batch, model, device): | 
					
						
							|  |  |  |     input_batch, target_batch = input_batch.to(device), target_batch.to(device) | 
					
						
							| 
									
										
										
										
											2024-05-05 12:21:10 -05:00
										 |  |  |     logits = model(input_batch)[:, -1, :]  # Logits of last output token | 
					
						
							| 
									
										
										
										
											2024-05-05 12:05:17 -05:00
										 |  |  |     loss = torch.nn.functional.cross_entropy(logits, target_batch) | 
					
						
							|  |  |  |     return loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Overall the same as `train_model_simple` in chapter 5 | 
					
						
							|  |  |  | def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, | 
					
						
							|  |  |  |                             eval_freq, eval_iter, tokenizer): | 
					
						
							|  |  |  |     # Initialize lists to track losses and tokens seen | 
					
						
							|  |  |  |     train_losses, val_losses, train_accs, val_accs = [], [], [], [] | 
					
						
							|  |  |  |     examples_seen, global_step = 0, -1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Main training loop | 
					
						
							|  |  |  |     for epoch in range(num_epochs): | 
					
						
							|  |  |  |         model.train()  # Set model to training mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for input_batch, target_batch in train_loader: | 
					
						
							|  |  |  |             optimizer.zero_grad()  # Reset loss gradients from previous epoch | 
					
						
							|  |  |  |             loss = calc_loss_batch(input_batch, target_batch, model, device) | 
					
						
							|  |  |  |             loss.backward()  # Calculate loss gradients | 
					
						
							|  |  |  |             optimizer.step()  # Update model weights using loss gradients | 
					
						
							|  |  |  |             examples_seen += input_batch.shape[0]  # New: track examples instead of tokens | 
					
						
							|  |  |  |             global_step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Optional evaluation step | 
					
						
							|  |  |  |             if global_step % eval_freq == 0: | 
					
						
							|  |  |  |                 train_loss, val_loss = evaluate_model( | 
					
						
							|  |  |  |                     model, train_loader, val_loader, device, eval_iter) | 
					
						
							|  |  |  |                 train_losses.append(train_loss) | 
					
						
							|  |  |  |                 val_losses.append(val_loss) | 
					
						
							|  |  |  |                 print(f"Ep {epoch+1} (Step {global_step:06d}): " | 
					
						
							|  |  |  |                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Calculate accuracy after each epoch | 
					
						
							|  |  |  |         train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") | 
					
						
							|  |  |  |         print(f"Validation accuracy: {val_accuracy*100:.2f}%") | 
					
						
							|  |  |  |         train_accs.append(train_accuracy) | 
					
						
							|  |  |  |         val_accs.append(val_accuracy) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_losses, val_losses, train_accs, val_accs, examples_seen | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"): | 
					
						
							|  |  |  |     fig, ax1 = plt.subplots(figsize=(5, 3)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Plot training and validation loss against epochs | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, train_values, label=f"Training {label}") | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}") | 
					
						
							|  |  |  |     ax1.set_xlabel("Epochs") | 
					
						
							|  |  |  |     ax1.set_ylabel(label.capitalize()) | 
					
						
							|  |  |  |     ax1.legend() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create a second x-axis for tokens seen | 
					
						
							|  |  |  |     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis | 
					
						
							|  |  |  |     ax2.plot(examples_seen, train_values, alpha=0)  # Invisible plot for aligning ticks | 
					
						
							|  |  |  |     ax2.set_xlabel("Examples seen") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     fig.tight_layout()  # Adjust layout to make room | 
					
						
							|  |  |  |     plt.savefig(f"{label}-plot.pdf") | 
					
						
							|  |  |  |     plt.show() |