177 lines
3.5 KiB
Plaintext
Raw Normal View History

2023-10-27 06:19:40 -05:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise A.3"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"\n",
"class NeuralNetwork(torch.nn.Module):\n",
" def __init__(self, num_inputs, num_outputs):\n",
" super().__init__()\n",
"\n",
" self.layers = torch.nn.Sequential(\n",
" \n",
" # 1st hidden layer\n",
" torch.nn.Linear(num_inputs, 30),\n",
" torch.nn.ReLU(),\n",
"\n",
" # 2nd hidden layer\n",
" torch.nn.Linear(30, 20),\n",
" torch.nn.ReLU(),\n",
"\n",
" # output layer\n",
" torch.nn.Linear(20, num_outputs),\n",
" )\n",
"\n",
" def forward(self, x):\n",
" logits = self.layers(x)\n",
" return logits"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of trainable model parameters: 752\n"
]
}
],
"source": [
"model = NeuralNetwork(2, 2)\n",
"\n",
"num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
"print(\"Total number of trainable model parameters:\", num_params)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise A.4"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "qGgnamiyLJxp"
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"a = torch.rand(100, 200)\n",
"b = torch.rand(200, 300)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CvGvIeVkLzXE",
"outputId": "44d027be-0787-4348-9c06-4e559d94d0e1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"63.8 µs ± 8.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
]
}
],
"source": [
"%timeit a @ b"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "OmRtZLa9L2ZG"
},
"outputs": [],
"source": [
"a, b = a.to(\"cuda\"), b.to(\"cuda\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "duLEhXDPL6k0",
"outputId": "3486471d-fd62-446f-9855-2d01f41fd101"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"13.8 µs ± 425 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
]
}
],
"source": [
"%timeit a @ b"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Zqqa-To2L749"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "V100",
"machine_shape": "hm",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}