mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
177 lines
3.5 KiB
Plaintext
177 lines
3.5 KiB
Plaintext
![]() |
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Exercise A.3"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import torch\n",
|
||
|
"\n",
|
||
|
"class NeuralNetwork(torch.nn.Module):\n",
|
||
|
" def __init__(self, num_inputs, num_outputs):\n",
|
||
|
" super().__init__()\n",
|
||
|
"\n",
|
||
|
" self.layers = torch.nn.Sequential(\n",
|
||
|
" \n",
|
||
|
" # 1st hidden layer\n",
|
||
|
" torch.nn.Linear(num_inputs, 30),\n",
|
||
|
" torch.nn.ReLU(),\n",
|
||
|
"\n",
|
||
|
" # 2nd hidden layer\n",
|
||
|
" torch.nn.Linear(30, 20),\n",
|
||
|
" torch.nn.ReLU(),\n",
|
||
|
"\n",
|
||
|
" # output layer\n",
|
||
|
" torch.nn.Linear(20, num_outputs),\n",
|
||
|
" )\n",
|
||
|
"\n",
|
||
|
" def forward(self, x):\n",
|
||
|
" logits = self.layers(x)\n",
|
||
|
" return logits"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Total number of trainable model parameters: 752\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model = NeuralNetwork(2, 2)\n",
|
||
|
"\n",
|
||
|
"num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
||
|
"print(\"Total number of trainable model parameters:\", num_params)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Exercise A.4"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"id": "qGgnamiyLJxp"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import torch\n",
|
||
|
"\n",
|
||
|
"a = torch.rand(100, 200)\n",
|
||
|
"b = torch.rand(200, 300)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"colab": {
|
||
|
"base_uri": "https://localhost:8080/"
|
||
|
},
|
||
|
"id": "CvGvIeVkLzXE",
|
||
|
"outputId": "44d027be-0787-4348-9c06-4e559d94d0e1"
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"63.8 µs ± 8.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%timeit a @ b"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {
|
||
|
"id": "OmRtZLa9L2ZG"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"a, b = a.to(\"cuda\"), b.to(\"cuda\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {
|
||
|
"colab": {
|
||
|
"base_uri": "https://localhost:8080/"
|
||
|
},
|
||
|
"id": "duLEhXDPL6k0",
|
||
|
"outputId": "3486471d-fd62-446f-9855-2d01f41fd101"
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"13.8 µs ± 425 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%timeit a @ b"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "Zqqa-To2L749"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"accelerator": "GPU",
|
||
|
"colab": {
|
||
|
"gpuType": "V100",
|
||
|
"machine_shape": "hm",
|
||
|
"provenance": []
|
||
|
},
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.6"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|