| 
									
										
										
										
											2025-02-12 16:10:34 -06:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | import time | 
					
						
							|  |  |  | import urllib.request | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import matplotlib.pyplot as plt | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from torch.utils.data import Dataset, DataLoader | 
					
						
							|  |  |  | import tiktoken | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 2 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTDatasetV1(Dataset): | 
					
						
							|  |  |  |     def __init__(self, txt, tokenizer, max_length, stride): | 
					
						
							|  |  |  |         self.input_ids = [] | 
					
						
							|  |  |  |         self.target_ids = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Tokenize the entire text | 
					
						
							|  |  |  |         token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Use a sliding window to chunk the book into overlapping sequences of max_length | 
					
						
							|  |  |  |         for i in range(0, len(token_ids) - max_length, stride): | 
					
						
							|  |  |  |             input_chunk = token_ids[i:i + max_length] | 
					
						
							|  |  |  |             target_chunk = token_ids[i + 1: i + max_length + 1] | 
					
						
							|  |  |  |             self.input_ids.append(torch.tensor(input_chunk)) | 
					
						
							|  |  |  |             self.target_ids.append(torch.tensor(target_chunk)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __len__(self): | 
					
						
							|  |  |  |         return len(self.input_ids) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getitem__(self, idx): | 
					
						
							|  |  |  |         return self.input_ids[idx], self.target_ids[idx] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def create_dataloader_v1(txt, batch_size=4, max_length=256, | 
					
						
							|  |  |  |                          stride=128, shuffle=True, drop_last=True, num_workers=0): | 
					
						
							|  |  |  |     # Initialize the tokenizer | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataset | 
					
						
							|  |  |  |     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataloader | 
					
						
							|  |  |  |     dataloader = DataLoader( | 
					
						
							|  |  |  |         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, | 
					
						
							|  |  |  |         pin_memory=True | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return dataloader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 3 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | class PyTorchMultiHeadAttention(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, d_in, d_out, num_heads, dropout=0.0, qkv_bias=False): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         assert d_out % num_heads == 0, "embed_dim is indivisible by num_heads" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.num_heads = num_heads | 
					
						
							|  |  |  |         self.head_dim = d_out // num_heads | 
					
						
							|  |  |  |         self.d_out = d_out | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.proj = nn.Linear(d_out, d_out) | 
					
						
							|  |  |  |         self.dropout = dropout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         batch_size, num_tokens, embed_dim = x.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim) | 
					
						
							|  |  |  |         qkv = self.qkv(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim) | 
					
						
							|  |  |  |         qkv = qkv.view(batch_size, num_tokens, 3, self.num_heads, self.head_dim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim) | 
					
						
							|  |  |  |         qkv = qkv.permute(2, 0, 3, 1, 4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_heads, num_tokens, head_dim) | 
					
						
							|  |  |  |         queries, keys, values = qkv | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         use_dropout = 0. if not self.training else self.dropout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         context_vec = nn.functional.scaled_dot_product_attention( | 
					
						
							|  |  |  |             queries, keys, values, attn_mask=None, dropout_p=use_dropout, is_causal=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | 
					
						
							|  |  |  |         context_vec = context_vec.transpose(1, 2).contiguous().view(batch_size, num_tokens, self.d_out) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         context_vec = self.proj(context_vec) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return context_vec | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 4 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FeedForward(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.layers = nn.Sequential( | 
					
						
							|  |  |  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | 
					
						
							|  |  |  |             nn.GELU(approximate="tanh"), | 
					
						
							|  |  |  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         return self.layers(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TransformerBlock(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.att = PyTorchMultiHeadAttention( | 
					
						
							|  |  |  |             d_in=cfg["emb_dim"], | 
					
						
							|  |  |  |             d_out=cfg["emb_dim"], | 
					
						
							|  |  |  |             num_heads=cfg["n_heads"], | 
					
						
							|  |  |  |             dropout=cfg["drop_rate"], | 
					
						
							|  |  |  |             qkv_bias=cfg["qkv_bias"]) | 
					
						
							|  |  |  |         self.ff = FeedForward(cfg) | 
					
						
							|  |  |  |         self.norm1 = nn.LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.norm2 = nn.LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         # Shortcut connection for attention block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm1(x) | 
					
						
							|  |  |  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_shortcut(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shortcut connection for feed-forward block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm2(x) | 
					
						
							|  |  |  |         x = self.ff(x) | 
					
						
							|  |  |  |         x = self.drop_shortcut(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTModel(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.trf_blocks = nn.Sequential( | 
					
						
							|  |  |  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.final_norm = nn.LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, in_idx): | 
					
						
							|  |  |  |         batch_size, seq_len = in_idx.shape | 
					
						
							|  |  |  |         tok_embeds = self.tok_emb(in_idx) | 
					
						
							|  |  |  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | 
					
						
							|  |  |  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_emb(x) | 
					
						
							|  |  |  |         x = self.trf_blocks(x) | 
					
						
							|  |  |  |         x = self.final_norm(x) | 
					
						
							|  |  |  |         logits = self.out_head(x) | 
					
						
							|  |  |  |         return logits | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def generate_text_simple(model, idx, max_new_tokens, context_size): | 
					
						
							|  |  |  |     # idx is (B, T) array of indices in the current context | 
					
						
							|  |  |  |     for _ in range(max_new_tokens): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Crop current context if it exceeds the supported context size | 
					
						
							|  |  |  |         # E.g., if LLM supports only 5 tokens, and the context size is 10 | 
					
						
							|  |  |  |         # then only the last 5 tokens are used as context | 
					
						
							|  |  |  |         idx_cond = idx[:, -context_size:] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Get the predictions | 
					
						
							|  |  |  |         with torch.no_grad(): | 
					
						
							|  |  |  |             logits = model(idx_cond) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Focus only on the last time step | 
					
						
							|  |  |  |         # (batch, n_token, vocab_size) becomes (batch, vocab_size) | 
					
						
							|  |  |  |         logits = logits[:, -1, :] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Get the idx of the vocab entry with the highest logits value | 
					
						
							|  |  |  |         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Append sampled index to the running sequence | 
					
						
							|  |  |  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return idx | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 5 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def text_to_token_ids(text, tokenizer): | 
					
						
							|  |  |  |     encoded = tokenizer.encode(text) | 
					
						
							|  |  |  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension | 
					
						
							|  |  |  |     return encoded_tensor | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def token_ids_to_text(token_ids, tokenizer): | 
					
						
							|  |  |  |     flat = token_ids.squeeze(0)  # remove batch dimension | 
					
						
							|  |  |  |     return tokenizer.decode(flat.tolist()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_batch(input_batch, target_batch, model, device): | 
					
						
							|  |  |  |     input_batch, target_batch = input_batch.to(device), target_batch.to(device) | 
					
						
							|  |  |  |     logits = model(input_batch) | 
					
						
							|  |  |  |     loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) | 
					
						
							|  |  |  |     return loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_loader(data_loader, model, device, num_batches=None): | 
					
						
							|  |  |  |     total_loss = 0. | 
					
						
							|  |  |  |     if len(data_loader) == 0: | 
					
						
							|  |  |  |         return float("nan") | 
					
						
							|  |  |  |     elif num_batches is None: | 
					
						
							|  |  |  |         num_batches = len(data_loader) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         num_batches = min(num_batches, len(data_loader)) | 
					
						
							|  |  |  |     for i, (input_batch, target_batch) in enumerate(data_loader): | 
					
						
							|  |  |  |         if i < num_batches: | 
					
						
							|  |  |  |             loss = calc_loss_batch(input_batch, target_batch, model, device) | 
					
						
							|  |  |  |             total_loss += loss.item() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  |     return total_loss / num_batches | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def evaluate_model(model, train_loader, val_loader, device, eval_iter): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |     model.train() | 
					
						
							|  |  |  |     return train_loss, val_loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def generate_and_print_sample(model, tokenizer, device, start_context): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     context_size = model.pos_emb.weight.shape[0] | 
					
						
							|  |  |  |     encoded = text_to_token_ids(start_context, tokenizer).to(device) | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         token_ids = generate_text_simple( | 
					
						
							|  |  |  |             model=model, idx=encoded, | 
					
						
							|  |  |  |             max_new_tokens=50, context_size=context_size | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         decoded_text = token_ids_to_text(token_ids, tokenizer) | 
					
						
							|  |  |  |         print(decoded_text.replace("\n", " "))  # Compact print format | 
					
						
							|  |  |  |     model.train() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def train_model_simple_with_timing(model, train_loader, val_loader, optimizer, device, | 
					
						
							|  |  |  |                                    num_epochs, eval_freq, eval_iter, start_context, tokenizer): | 
					
						
							|  |  |  |     train_losses, val_losses, track_tokens = [], [], [] | 
					
						
							|  |  |  |     total_tokens, global_step, last_tokens = 0, -1, 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Variables for cumulative average tokens/sec | 
					
						
							|  |  |  |     cumulative_tokens, cumulative_time = 0.0, 0.0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # CUDA-specific timing setup | 
					
						
							|  |  |  |     use_cuda = device.type == "cuda" | 
					
						
							|  |  |  |     if use_cuda: | 
					
						
							|  |  |  |         t_start = torch.cuda.Event(enable_timing=True) | 
					
						
							|  |  |  |         t_end = torch.cuda.Event(enable_timing=True) | 
					
						
							|  |  |  |         torch.cuda.synchronize()  # Ensure all prior CUDA operations are done | 
					
						
							|  |  |  |         t_start.record()          # Start the timer for the first interval | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         t0 = time.time()          # Start the timer for the first interval | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Main training loop | 
					
						
							|  |  |  |     for epoch in range(num_epochs): | 
					
						
							|  |  |  |         model.train() | 
					
						
							|  |  |  |         for inp_batch, tgt_batch in train_loader: | 
					
						
							|  |  |  |             optimizer.zero_grad() | 
					
						
							|  |  |  |             global_step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Forward and backward pass | 
					
						
							|  |  |  |             loss = calc_loss_batch(inp_batch, tgt_batch, model, device) | 
					
						
							|  |  |  |             loss.backward() | 
					
						
							|  |  |  |             optimizer.step() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             total_tokens += inp_batch.numel() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # At evaluation intervals, measure elapsed time and tokens per second | 
					
						
							|  |  |  |             if global_step % eval_freq == 0: | 
					
						
							|  |  |  |                 # End timing for the current interval | 
					
						
							|  |  |  |                 if use_cuda: | 
					
						
							|  |  |  |                     t_end.record() | 
					
						
							|  |  |  |                     torch.cuda.synchronize()  # Wait for all CUDA ops to complete. | 
					
						
							|  |  |  |                     elapsed = t_start.elapsed_time(t_end) / 1000  # Convert ms to seconds | 
					
						
							|  |  |  |                     t_start.record()  # Reset timer for the next interval | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     elapsed = time.time() - t0 | 
					
						
							|  |  |  |                     t0 = time.time()  # Reset timer for the next interval | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 # Calculate tokens processed in this interval | 
					
						
							|  |  |  |                 tokens_interval = total_tokens - last_tokens | 
					
						
							|  |  |  |                 last_tokens = total_tokens | 
					
						
							|  |  |  |                 tps = tokens_interval / elapsed if elapsed > 0 else 0  # Tokens per second | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 # Update cumulative counters (skip the first evaluation interval) | 
					
						
							|  |  |  |                 if global_step:  # This is False only when global_step == 0 (first evaluation) | 
					
						
							|  |  |  |                     cumulative_tokens += tokens_interval | 
					
						
							|  |  |  |                     cumulative_time += elapsed | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 # Compute cumulative average tokens/sec (excluding the first interval) | 
					
						
							|  |  |  |                 avg_tps = cumulative_tokens / cumulative_time if cumulative_time > 0 else 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 # Evaluate model performance (this may add overhead) | 
					
						
							|  |  |  |                 train_loss, val_loss = evaluate_model(model, train_loader, val_loader, device, eval_iter) | 
					
						
							|  |  |  |                 train_losses.append(train_loss) | 
					
						
							|  |  |  |                 val_losses.append(val_loss) | 
					
						
							|  |  |  |                 track_tokens.append(total_tokens) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 print(f"Ep {epoch+1}, Step {global_step:06d}, " | 
					
						
							|  |  |  |                       f"Train: {train_loss:.3f}, Val: {val_loss:.3f}, " | 
					
						
							|  |  |  |                       f"Step tok/sec: {round(tps)}, Avg tok/sec: {round(avg_tps)}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         generate_and_print_sample(model, tokenizer, device, start_context) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Memory stats | 
					
						
							|  |  |  |         if torch.cuda.is_available(): | 
					
						
							|  |  |  |             device = torch.cuda.current_device() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             allocated = torch.cuda.memory_allocated(device) / 1024**3  # Convert to GB | 
					
						
							|  |  |  |             reserved = torch.cuda.memory_reserved(device) / 1024**3  # Convert to GB | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             print(f"\nAllocated memory: {allocated:.4f} GB") | 
					
						
							|  |  |  |             print(f"Reserved memory: {reserved:.4f} GB\n") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_losses, val_losses, track_tokens | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): | 
					
						
							|  |  |  |     fig, ax1 = plt.subplots() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Plot training and validation loss against epochs | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, train_losses, label="Training loss") | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") | 
					
						
							|  |  |  |     ax1.set_xlabel("Epochs") | 
					
						
							|  |  |  |     ax1.set_ylabel("Loss") | 
					
						
							|  |  |  |     ax1.legend(loc="upper right") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create a second x-axis for tokens seen | 
					
						
							|  |  |  |     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis | 
					
						
							|  |  |  |     ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks | 
					
						
							|  |  |  |     ax2.set_xlabel("Tokens seen") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     fig.tight_layout()  # Adjust layout to make room | 
					
						
							|  |  |  |     # plt.show() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Main function calls | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def main(gpt_config, settings): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     torch.manual_seed(123) | 
					
						
							|  |  |  |     device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
							|  |  |  |     print(f"PyTorch version: {torch.__version__}") | 
					
						
							|  |  |  |     print(f"Using {device}") | 
					
						
							|  |  |  |     if torch.cuda.is_available(): | 
					
						
							|  |  |  |         print(f"CUDA version: {torch.version.cuda}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         capability = torch.cuda.get_device_capability() | 
					
						
							|  |  |  |         if capability[0] >= 7:  # Volta (7.0+), Turing (7.5+), Ampere (8.0+), Hopper (9.0+) | 
					
						
							|  |  |  |             torch.set_float32_matmul_precision("high") | 
					
						
							|  |  |  |             print("Uses tensor cores") | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             print("Tensor cores not supported on this GPU. Using default precision.") | 
					
						
							|  |  |  |     print(f"Uses tensor cores: {torch.cuda.is_available()}") | 
					
						
							|  |  |  |     print() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  |     # Download data if necessary | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     file_path = "middlemarch.txt" | 
					
						
							|  |  |  |     url = "https://www.gutenberg.org/cache/epub/145/pg145.txt" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if not os.path.exists(file_path): | 
					
						
							|  |  |  |         with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |             text_data = response.read().decode('utf-8') | 
					
						
							|  |  |  |         with open(file_path, "w", encoding="utf-8") as file: | 
					
						
							|  |  |  |             file.write(text_data) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         with open(file_path, "r", encoding="utf-8") as file: | 
					
						
							|  |  |  |             text_data = file.read() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  |     # Initialize model | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     model = GPTModel(gpt_config) | 
					
						
							|  |  |  |     model = torch.compile(model) | 
					
						
							|  |  |  |     model.to(device).to(torch.bfloat16) | 
					
						
							|  |  |  |     optimizer = torch.optim.AdamW( | 
					
						
							|  |  |  |         model.parameters(), lr=settings["learning_rate"], weight_decay=settings["weight_decay"], | 
					
						
							|  |  |  |         fused=True | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  |     # Set up dataloaders | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Train/validation ratio | 
					
						
							|  |  |  |     train_ratio = 0.90 | 
					
						
							|  |  |  |     split_idx = int(train_ratio * len(text_data)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_loader = create_dataloader_v1( | 
					
						
							|  |  |  |         text_data[:split_idx], | 
					
						
							|  |  |  |         batch_size=settings["batch_size"], | 
					
						
							|  |  |  |         max_length=gpt_config["context_length"], | 
					
						
							|  |  |  |         stride=gpt_config["context_length"], | 
					
						
							|  |  |  |         drop_last=True, | 
					
						
							|  |  |  |         shuffle=True, | 
					
						
							|  |  |  |         num_workers=4 | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     val_loader = create_dataloader_v1( | 
					
						
							|  |  |  |         text_data[split_idx:], | 
					
						
							|  |  |  |         batch_size=settings["batch_size"], | 
					
						
							|  |  |  |         max_length=gpt_config["context_length"], | 
					
						
							|  |  |  |         stride=gpt_config["context_length"], | 
					
						
							|  |  |  |         drop_last=False, | 
					
						
							|  |  |  |         shuffle=False, | 
					
						
							|  |  |  |         num_workers=4 | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  |     # Train model | 
					
						
							|  |  |  |     ############################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_losses, val_losses, tokens_seen = train_model_simple_with_timing( | 
					
						
							|  |  |  |         model=model, | 
					
						
							|  |  |  |         train_loader=train_loader, | 
					
						
							|  |  |  |         val_loader=val_loader, | 
					
						
							|  |  |  |         optimizer=optimizer, | 
					
						
							|  |  |  |         device=device, | 
					
						
							|  |  |  |         num_epochs=settings["num_epochs"], | 
					
						
							|  |  |  |         eval_freq=10, | 
					
						
							|  |  |  |         eval_iter=1, | 
					
						
							|  |  |  |         start_context="Every effort moves you", | 
					
						
							|  |  |  |         tokenizer=tokenizer | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_losses, val_losses, tokens_seen, model | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     GPT_CONFIG_124M = { | 
					
						
							|  |  |  |         "vocab_size": 50304,     # Vocabulary size | 
					
						
							|  |  |  |         "context_length": 1024,  # Input tokens per training example | 
					
						
							|  |  |  |         "emb_dim": 768,          # Embedding dimension | 
					
						
							|  |  |  |         "n_heads": 12,           # Number of attention heads | 
					
						
							|  |  |  |         "n_layers": 12,          # Number of layers | 
					
						
							|  |  |  |         "drop_rate": 0.1,        # Dropout rate | 
					
						
							|  |  |  |         "qkv_bias": False        # Query-key-value bias | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     OTHER_SETTINGS = { | 
					
						
							|  |  |  |         "learning_rate": 5e-4, | 
					
						
							|  |  |  |         "num_epochs": 15, | 
					
						
							|  |  |  |         "batch_size": 32, | 
					
						
							|  |  |  |         "weight_decay": 0.1 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ########################### | 
					
						
							|  |  |  |     # Initiate training | 
					
						
							|  |  |  |     ########################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_losses, val_losses, tokens_seen, model = main(GPT_CONFIG_124M, OTHER_SETTINGS) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ########################### | 
					
						
							|  |  |  |     # After training | 
					
						
							|  |  |  |     ########################### | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Plot results | 
					
						
							|  |  |  |     epochs_tensor = torch.linspace(0, OTHER_SETTINGS["num_epochs"], len(train_losses)) | 
					
						
							|  |  |  |     plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses) | 
					
						
							|  |  |  |     plt.savefig("loss.pdf") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Save and load model | 
					
						
							| 
									
										
										
										
											2025-03-27 10:43:45 -05:00
										 |  |  |     # | 
					
						
							|  |  |  |     # compiled = hasattr(model, "_orig_mod") | 
					
						
							|  |  |  |     # if compiled: | 
					
						
							|  |  |  |     #     torch.save(model._orig_mod.state_dict(), "model.pth") | 
					
						
							|  |  |  |     # else: | 
					
						
							|  |  |  |     #     torch.save(model.state_dict(), "model.pth") | 
					
						
							|  |  |  |     # | 
					
						
							| 
									
										
										
										
											2025-02-12 16:10:34 -06:00
										 |  |  |     # model = GPTModel(GPT_CONFIG_124M) | 
					
						
							|  |  |  |     # model.load_state_dict(torch.load("model.pth", weights_only=True)) |