2024-05-23 20:35:41 -05:00
{
2024-10-11 12:15:01 -05:00
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "FtQYMbLvgzO-"
},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EbrESHKtgzPA"
},
"source": [
"# FLOPS Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xS2WjniMgzPB"
},
"source": [
"- FLOPs (Floating Point Operations Per Second) measure the computational complexity of neural network models by counting the number of floating-point operations executed\n",
"- High FLOPs indicate more intensive computation and energy consumption"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "L01-NzkggzPB"
},
"outputs": [],
"source": [
"# pip install -r requirements-extra.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
2024-10-11 12:12:05 -05:00
},
2024-10-11 12:15:01 -05:00
"id": "ObzfVatqgzPC",
"outputId": "3ead6a41-ac38-4db1-9fc3-012fb3ad18cd"
},
"outputs": [
2024-10-11 12:12:05 -05:00
{
2024-10-11 12:15:01 -05:00
"name": "stdout",
"output_type": "stream",
"text": [
"thop version: 0.1.1-2209072238\n",
"torch version: 2.4.1+cu121\n"
]
}
],
"source": [
"from importlib.metadata import version\n",
"\n",
"pkgs = [\n",
" \"thop\",\n",
" \"torch\",\n",
"]\n",
"for p in pkgs:\n",
" print(f\"{p} version: {version(p)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "74UpjSLjgzPC"
},
"source": [
" \n",
"# Simple benchmark with fixed batch size"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "90pnCK39gzPD"
},
"source": [
"- forward pass only"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
2024-10-11 12:12:05 -05:00
},
2024-10-11 12:15:01 -05:00
"id": "GerIdRMXd6g9",
"outputId": "177c6d00-a817-40fe-badd-95cfa8ac9b51"
},
"outputs": [
2024-10-11 12:12:05 -05:00
{
2024-10-11 12:15:01 -05:00
"name": "stdout",
"output_type": "stream",
"text": [
"gpt-small (124M) : 5.1e+11 FLOPS\n",
"gpt-medium (355M) : 1.4e+12 FLOPS\n",
"gpt-large (774M) : 3.2e+12 FLOPS\n",
"gpt-xl (1558M) : 6.4e+12 FLOPS\n"
]
}
],
"source": [
"import torch\n",
"from thop import profile\n",
"\n",
2025-03-23 19:28:49 -05:00
"# For installation instructions, see:\n",
"# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n",
"from llms_from_scratch.ch04 import GPTModel\n",
2024-10-11 12:15:01 -05:00
"\n",
"\n",
"BASE_CONFIG = {\n",
" \"vocab_size\": 50257, # Vocabulary size\n",
" \"context_length\": 1024, # Context length\n",
" \"drop_rate\": 0.0, # Dropout rate\n",
" \"qkv_bias\": True # Query-key-value bias\n",
"}\n",
"\n",
"model_configs = {\n",
" \"gpt-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
" \"gpt-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
" \"gpt-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
" \"gpt-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
"}\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"batch_size = 2\n",
"input_tensor = torch.randint(0, 50257, (batch_size, 1024)).to(device)\n",
"\n",
"for size in model_configs:\n",
" BASE_CONFIG.update(model_configs[size])\n",
"\n",
" model = GPTModel(BASE_CONFIG).bfloat16()\n",
" model.to(device)\n",
"\n",
" # MACS = multiply-accumulate operations\n",
" # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
" macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
" flops = 2*macs\n",
" print(f\"{size:18}: {flops:.1e} FLOPS\")\n",
"\n",
" del model\n",
" torch.cuda.empty_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_S6V05QmgzPD"
},
"source": [
" \n",
"# Simple benchmark with automatic batch size finding"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "amw4E983gzPD"
},
"source": [
"- forward pass only"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
2024-10-11 12:12:05 -05:00
},
2024-10-11 12:15:01 -05:00
"id": "h08VOiqpgzPE",
"outputId": "a6a90ef8-28fb-4b55-9268-6915b0c84c51"
},
"outputs": [
2024-10-11 12:12:05 -05:00
{
2024-10-11 12:15:01 -05:00
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Processing gpt-small (124M)\n",
" Batch size 256: 6.5e+13 FLOPS\n",
" Batch size 384: 9.7e+13 FLOPS\n",
" Batch size 388: 9.8e+13 FLOPS\n",
" Batch size 389: 9.8e+13 FLOPS\n",
"\n",
"Processing gpt-medium (355M)\n",
" Batch size 256: 1.9e+14 FLOPS\n",
" Batch size 260: 1.9e+14 FLOPS\n",
" Batch size 262: 1.9e+14 FLOPS\n",
" Batch size 263: 1.9e+14 FLOPS\n",
"\n",
"Processing gpt-large (774M)\n",
" Batch size 256: 4.0e+14 FLOPS\n",
"\n",
"Processing gpt-xl (1558M)\n",
" Batch size 128: 4.1e+14 FLOPS\n",
" Batch size 136: 4.3e+14 FLOPS\n",
" Batch size 140: 4.5e+14 FLOPS\n",
" Batch size 142: 4.5e+14 FLOPS\n",
" Batch size 143: 4.6e+14 FLOPS\n"
]
2024-10-11 12:12:05 -05:00
}
2024-10-11 12:15:01 -05:00
],
"source": [
"for size in model_configs:\n",
" print(f\"\\nProcessing {size}\")\n",
" config = BASE_CONFIG.copy()\n",
" config.update(model_configs[size])\n",
"\n",
" min_batch_size = 1\n",
" max_batch_size = None\n",
" max_possible_batch_size = 4096\n",
"\n",
" while min_batch_size <= max_possible_batch_size:\n",
" batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
" try:\n",
" input_tensor = torch.randint(\n",
" 0, config[\"vocab_size\"],\n",
" (batch_size, config[\"context_length\"]),\n",
" device=device\n",
" )\n",
"\n",
" model = GPTModel(config).bfloat16().to(device)\n",
"\n",
" # MACS = multiply-accumulate operations\n",
" # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
" macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
" flops = 2 * macs\n",
" print(f\" Batch size {batch_size}: {flops:.1e} FLOPS\")\n",
"\n",
" # If successful, try a larger batch size\n",
" min_batch_size = batch_size + 1\n",
" max_batch_size = batch_size\n",
"\n",
" # Clean up\n",
" del model, input_tensor\n",
" torch.cuda.empty_cache()\n",
"\n",
" except RuntimeError as e:\n",
" if \"out of memory\" in str(e):\n",
" # Try smaller batch size\n",
" max_possible_batch_size = batch_size - 1\n",
"\n",
" # Clean up\n",
" try:\n",
" del model, input_tensor\n",
" torch.cuda.empty_cache()\n",
" except NameError:\n",
" pass\n",
" else:\n",
" raise e"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V4lD7tfcgzPE"
},
"source": [
" \n",
"# Benchmark with automatic batch size finding and Model FLOP Utilization (MFU)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "70Y2mblVgzPE"
},
"source": [
"- Model FLOPs Utilization (MFU) explanation from the [PaLM paper](https://arxiv.org/abs/2204.02311)\n",
"\n",
"> We propose a new metric for efficiency that is implementation-independent and permits a cleaner comparison of system efficiency, called model FLOPs utilization (MFU). This is the ratio of the observed throughput (tokens-per-second) relative to the theoretical maximum throughput of a system operating at peak FLOPs. Crucially, the “theoretical maximum” throughput only accounts for the required operations to compute the forward+backward passes, and not rematerialization.\n",
"\n",
"\n",
"$$\\text{MFU} = \\frac{\\text{Observed Tokens per Second}}{\\text{Theoretical Max Tokens per Second}}$$\n",
"\n",
"where\n",
"\n",
"$$\\text{Theoretical Max Tokens per Second} = \\frac{\\text{Max FLOPs per Second}}{\\text{Total FLOPs per Token}}$$\n",
"\n",
"and\n",
"\n",
"$$\\text{Tokens per Second} = \\frac{\\text{Batch Size} \\times \\text{Sequence Length}}{\\text{Total Time}}$$"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TKttjC8xgzPF"
},
"source": [
"- forward and backward pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6aO4rjtNgzPF"
},
"outputs": [],
"source": [
"# Theoretical max flops per second provided by the GPU manufacturer\n",
"\n",
"flops_per_second = {\n",
" # https://www.techpowerup.com/gpu-specs/h100-pcie-80-gb.c3899\n",
" \"H100\": {\n",
" torch.float32: 51.22e12, # 51.22 TFLOPs for FP32 on NVIDIA H100\n",
" torch.float16: 204.9e12, # 204.9 TFLOPs for FP16 on NVIDIA H100\n",
" torch.bfloat16: 204.9e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/l4.c4091\n",
" \"L4\": {\n",
" torch.float32: 30.29e12, # 30.29 TFLOPs for FP32 on NVIDIA L4\n",
" torch.float16: 30.29e12, # 30.29 TFLOPs for FP16 on NVIDIA L4\n",
" torch.bfloat16: 30.29e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/tesla-t4.c3316\n",
" \"T4\": {\n",
" torch.float32: 8.1e12, # 8.1 TFLOPs for FP32 on NVIDIA T4\n",
" torch.float16: 65.13e12, # 65.13 TFLOPs for FP16 on NVIDIA T4\n",
" torch.bfloat16: 65.13e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/a10g.c3798\n",
" \"A10G\": {\n",
" torch.float32: 31.52e12, # 31.52 TFLOPs for FP32 on NVIDIA A10G\n",
" torch.float16: 31.52e12, # 31.52 TFLOPs for FP16 on NVIDIA A10G\n",
" torch.bfloat16: 31.52e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/a100-pcie-40-gb.c3623\n",
" \"A100\": {\n",
" torch.float32: 19.49e12, # 19.49 TFLOPs for FP32 on NVIDIA A100\n",
" torch.float16: 77.97e12, # 77.97 TFLOPs for FP16 on NVIDIA A100\n",
" torch.bfloat16: 77.97e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621\n",
" \"RTX_3080\": {\n",
" torch.float32: 29.77e12, # 29.77 TFLOPs for FP32 on NVIDIA RTX 3080\n",
" torch.float16: 29.77e12, # 29.77 TFLOPs for FP16 on NVIDIA RTX 3080\n",
" torch.bfloat16: 29.77e12\n",
" },\n",
" # https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622\n",
" \"RTX_3090\": {\n",
" torch.float32: 35.58e12, # 35.58 TFLOPs for FP32 on NVIDIA RTX 3090\n",
" torch.float16: 35.58e12, # 35.58 TFLOPs for FP16 on NVIDIA RTX 3090\n",
" torch.bfloat16: 35.58e12\n",
" }\n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
2024-10-11 12:12:05 -05:00
"colab": {
2024-10-11 12:15:01 -05:00
"background_save": true,
"base_uri": "https://localhost:8080/"
2024-10-11 12:12:05 -05:00
},
2024-10-11 12:15:01 -05:00
"id": "HW5qWfE7gzPF",
"outputId": "bb1663bc-ee66-44f1-f54d-0bb66ee0d0c2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPU Model: A100\n",
"\n",
"Processing gpt-small (124M)\n",
" Batch size 16: Tokens/sec: 34248.82, MFU: 0.3256\n",
" Batch size 24: Tokens/sec: 62568.34, MFU: 0.5948\n",
"\n",
"Processing gpt-medium (355M)\n",
" Batch size 4: Tokens/sec: 20159.93, MFU: 0.5483\n",
" Batch size 6: Tokens/sec: 21717.66, MFU: 0.5907\n",
" Batch size 7: Tokens/sec: 22536.25, MFU: 0.6130\n",
"\n",
"Processing gpt-large (774M)\n",
" Batch size 8: Tokens/sec: 12465.21, MFU: 0.7406\n",
"\n",
"Processing gpt-xl (1558M)\n",
" Batch size 4: Tokens/sec: 6779.92, MFU: 0.8113\n"
]
2024-10-10 19:42:53 -05:00
}
2024-10-11 12:15:01 -05:00
],
"source": [
"import time\n",
"\n",
"def get_gpu_model(flops_per_second_dict):\n",
" device_name = torch.cuda.get_device_name(0)\n",
" for model in flops_per_second_dict.keys():\n",
" if model in device_name:\n",
" return model\n",
" return \"Unknown\" # Default if no matching model is found\n",
"\n",
"\n",
"gpu_model = get_gpu_model(flops_per_second)\n",
"print(\"GPU Model:\", gpu_model)\n",
"\n",
"if gpu_model != \"Unknown\":\n",
"\n",
" for size in model_configs:\n",
" print(f\"\\nProcessing {size}\")\n",
" config = BASE_CONFIG.copy()\n",
" config.update(model_configs[size])\n",
"\n",
" min_batch_size = 1\n",
" max_batch_size = None\n",
" max_possible_batch_size = 4096\n",
"\n",
" while min_batch_size <= max_possible_batch_size:\n",
" batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
" try:\n",
" input_tensor = torch.randint(\n",
" 0, config[\"vocab_size\"],\n",
" (batch_size, config[\"context_length\"]),\n",
" device=device\n",
" )\n",
"\n",
" model = GPTModel(config).bfloat16().to(device)\n",
" model.train()\n",
"\n",
" # Start timing\n",
" torch.cuda.synchronize()\n",
" start_time = time.time()\n",
"\n",
" # Forward & backward pass\n",
" output = model(input_tensor)\n",
" loss = output.sum() # Compute a dummy loss\n",
" loss.backward()\n",
"\n",
" # End timing\n",
" torch.cuda.synchronize()\n",
" end_time = time.time()\n",
"\n",
" total_time_seconds = end_time - start_time\n",
"\n",
" # Calculate FLOPs for forward pass\n",
" macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
" flops_forward = 2 * macs # Assuming one MAC equals two FLOPs\n",
"\n",
" # Estimate FLOPs for backward pass (typically 2x forward FLOPs)\n",
" flops_backward = 2 * flops_forward\n",
"\n",
" # Total FLOPs for forward + backward passes\n",
" total_flops = flops_forward + flops_backward # Or total_flops = flops_forward * 3\n",
"\n",
" data_type = next(model.parameters()).dtype\n",
" max_flops_per_second = flops_per_second[gpu_model].get(data_type, 0)\n",
"\n",
" # Compute tokens per second\n",
" tokens_processed = batch_size * config[\"context_length\"]\n",
" tokens_per_second = tokens_processed / total_time_seconds\n",
"\n",
" # Compute FLOPs per token\n",
" flops_per_token = total_flops / tokens_processed\n",
"\n",
" # Compute theoretical max tokens per second\n",
" if flops_per_token > 0:\n",
" theoretical_max_tokens_per_second = max_flops_per_second / flops_per_token\n",
" else:\n",
" theoretical_max_tokens_per_second = 0 # Avoid division by zero\n",
"\n",
" # Compute MFU\n",
" if theoretical_max_tokens_per_second > 0:\n",
" mfu = tokens_per_second / theoretical_max_tokens_per_second\n",
" else:\n",
" mfu = 0 # Avoid division by zero\n",
"\n",
" print(f\" Batch size {batch_size}: Tokens/sec: {tokens_per_second:.2f}, MFU: {mfu:.4f}\")\n",
"\n",
" # If successful, try a larger batch size\n",
" min_batch_size = batch_size + 1\n",
" max_batch_size = batch_size\n",
"\n",
" # Clean up\n",
" del model, input_tensor, output, loss\n",
" torch.cuda.empty_cache()\n",
"\n",
" except RuntimeError as e:\n",
" if \"out of memory\" in str(e).lower():\n",
" # Try smaller batch size\n",
" max_possible_batch_size = batch_size - 1\n",
"\n",
" # Clean up\n",
" try:\n",
" del model, input_tensor\n",
" torch.cuda.empty_cache()\n",
" except NameError:\n",
" pass\n",
" else:\n",
" raise e\n",
"\n",
"else:\n",
" print(\"Unknown GPU model. Please update the flops_per_second dictionary with your GPU information.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LovmswRigzPG"
},
"source": [
"- a value of 1.0 is best (equal to 100%)\n",
"- Note that the batch sizes are smaller than previously because we also carry out the backward pass here, which is more memory-intensive"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"machine_shape": "hm",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
2024-05-23 20:35:41 -05:00
},
2024-10-11 12:15:01 -05:00
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2025-03-23 19:28:49 -05:00
"version": "3.10.16"
2024-10-11 12:15:01 -05:00
}
},
"nbformat": 4,
"nbformat_minor": 4
}