2024-06-20 07:37:47 -05:00
|
|
|
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
#
|
|
|
|
# A minimal instruction finetuning file based on the code in chapter 7
|
|
|
|
|
|
|
|
from functools import partial
|
|
|
|
from importlib.metadata import version
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import time
|
|
|
|
import urllib
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import tiktoken
|
|
|
|
import torch
|
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
# Import from local files in this folder
|
|
|
|
from gpt_download import download_and_load_gpt2
|
|
|
|
from previous_chapters import (
|
|
|
|
calc_loss_loader,
|
|
|
|
generate,
|
|
|
|
GPTModel,
|
|
|
|
load_weights_into_gpt,
|
|
|
|
text_to_token_ids,
|
|
|
|
train_model_simple,
|
|
|
|
token_ids_to_text
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class InstructionDataset(Dataset):
|
|
|
|
def __init__(self, data, tokenizer):
|
|
|
|
self.data = data
|
|
|
|
|
|
|
|
# Pre-tokenize texts
|
|
|
|
self.encoded_texts = []
|
|
|
|
for entry in data:
|
|
|
|
instruction_plus_input = format_input(entry)
|
|
|
|
response_text = f"\n\n### Response:\n{entry['output']}"
|
|
|
|
full_text = instruction_plus_input + response_text
|
|
|
|
self.encoded_texts.append(
|
|
|
|
tokenizer.encode(full_text)
|
|
|
|
)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return self.encoded_texts[index]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
|
|
|
|
def custom_collate_fn(
|
|
|
|
batch,
|
|
|
|
pad_token_id=50256,
|
|
|
|
ignore_index=-100,
|
|
|
|
allowed_max_length=None,
|
|
|
|
device="cpu"
|
|
|
|
):
|
|
|
|
# Find the longest sequence in the batch
|
|
|
|
batch_max_length = max(len(item)+1 for item in batch)
|
|
|
|
|
|
|
|
# Pad and prepare inputs and targets
|
|
|
|
inputs_lst, targets_lst = [], []
|
|
|
|
|
|
|
|
for item in batch:
|
|
|
|
new_item = item.copy()
|
|
|
|
# Add an <|endoftext|> token
|
|
|
|
new_item += [pad_token_id]
|
|
|
|
# Pad sequences to max_length
|
|
|
|
padded = new_item + [pad_token_id] * (batch_max_length - len(new_item))
|
|
|
|
inputs = torch.tensor(padded[:-1]) # Truncate the last token for inputs
|
|
|
|
targets = torch.tensor(padded[1:]) # Shift +1 to the right for targets
|
|
|
|
|
|
|
|
# New: Replace all but the first padding tokens in targets by ignore_index
|
|
|
|
mask = targets == pad_token_id
|
|
|
|
indices = torch.nonzero(mask).squeeze()
|
|
|
|
if indices.numel() > 1:
|
|
|
|
targets[indices[1:]] = ignore_index
|
|
|
|
|
|
|
|
# New: Optionally truncate to maximum sequence length
|
|
|
|
if allowed_max_length is not None:
|
|
|
|
inputs = inputs[:allowed_max_length]
|
|
|
|
targets = targets[:allowed_max_length]
|
|
|
|
|
|
|
|
inputs_lst.append(inputs)
|
|
|
|
targets_lst.append(targets)
|
|
|
|
|
|
|
|
# Convert list of inputs and targets to tensors and transfer to target device
|
|
|
|
inputs_tensor = torch.stack(inputs_lst).to(device)
|
|
|
|
targets_tensor = torch.stack(targets_lst).to(device)
|
|
|
|
|
|
|
|
return inputs_tensor, targets_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def download_and_load_file(file_path, url):
|
|
|
|
|
|
|
|
if not os.path.exists(file_path):
|
|
|
|
with urllib.request.urlopen(url) as response:
|
|
|
|
text_data = response.read().decode("utf-8")
|
|
|
|
with open(file_path, "w", encoding="utf-8") as file:
|
|
|
|
file.write(text_data)
|
|
|
|
|
|
|
|
with open(file_path, "r") as file:
|
|
|
|
data = json.load(file)
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
def format_input(entry):
|
|
|
|
instruction_text = (
|
|
|
|
f"Below is an instruction that describes a task. "
|
|
|
|
f"Write a response that appropriately completes the request."
|
|
|
|
f"\n\n### Instruction:\n{entry['instruction']}"
|
|
|
|
)
|
|
|
|
|
|
|
|
input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""
|
|
|
|
|
|
|
|
return instruction_text + input_text
|
|
|
|
|
|
|
|
|
|
|
|
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
|
|
|
|
fig, ax1 = plt.subplots(figsize=(12, 6))
|
|
|
|
|
|
|
|
# Plot training and validation loss against epochs
|
|
|
|
ax1.plot(epochs_seen, train_losses, label="Training loss")
|
|
|
|
ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
|
|
|
|
ax1.set_xlabel("Epochs")
|
|
|
|
ax1.set_ylabel("Loss")
|
|
|
|
ax1.legend(loc="upper right")
|
|
|
|
|
|
|
|
# Create a second x-axis for tokens seen
|
|
|
|
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
|
|
|
ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
|
|
|
|
ax2.set_xlabel("Tokens seen")
|
|
|
|
|
|
|
|
fig.tight_layout() # Adjust layout to make room
|
|
|
|
plot_name = "loss-plot-standalone.pdf"
|
|
|
|
print(f"Plot saved as {plot_name}")
|
|
|
|
plt.savefig(plot_name)
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
def main(test_mode=False):
|
2024-06-20 07:37:47 -05:00
|
|
|
#######################################
|
|
|
|
# Print package versions
|
|
|
|
#######################################
|
|
|
|
print()
|
|
|
|
pkgs = [
|
|
|
|
"matplotlib", # Plotting library
|
|
|
|
"tiktoken", # Tokenizer
|
|
|
|
"torch", # Deep learning library
|
|
|
|
"tqdm", # Progress bar
|
|
|
|
"tensorflow", # For OpenAI's pretrained weights
|
|
|
|
]
|
|
|
|
for p in pkgs:
|
|
|
|
print(f"{p} version: {version(p)}")
|
|
|
|
print(50*"-")
|
|
|
|
|
|
|
|
#######################################
|
|
|
|
# Download and prepare dataset
|
|
|
|
#######################################
|
|
|
|
file_path = "instruction-data.json"
|
|
|
|
url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch07/01_main-chapter-code/instruction-data.json"
|
|
|
|
data = download_and_load_file(file_path, url)
|
|
|
|
|
|
|
|
train_portion = int(len(data) * 0.85) # 85% for training
|
|
|
|
test_portion = int(len(data) * 0.1) # 10% for testing
|
|
|
|
|
|
|
|
train_data = data[:train_portion]
|
|
|
|
test_data = data[train_portion:train_portion + test_portion]
|
|
|
|
val_data = data[train_portion + test_portion:]
|
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
# Use very small subset for testing purposes
|
|
|
|
if args.test_mode:
|
|
|
|
train_data = train_data[:10]
|
|
|
|
val_data = val_data[:10]
|
|
|
|
test_data = test_data[:10]
|
|
|
|
|
2024-06-20 07:37:47 -05:00
|
|
|
print("Training set length:", len(train_data))
|
|
|
|
print("Validation set length:", len(val_data))
|
|
|
|
print("Test set length:", len(test_data))
|
|
|
|
print(50*"-")
|
|
|
|
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
print("Device:", device)
|
2024-06-21 06:31:31 -05:00
|
|
|
print(50*"-")
|
|
|
|
|
2024-06-20 07:37:47 -05:00
|
|
|
customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=1024)
|
|
|
|
|
|
|
|
num_workers = 0
|
|
|
|
batch_size = 8
|
|
|
|
|
|
|
|
torch.manual_seed(123)
|
|
|
|
|
|
|
|
train_dataset = InstructionDataset(train_data, tokenizer)
|
|
|
|
train_loader = DataLoader(
|
|
|
|
train_dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
collate_fn=customized_collate_fn,
|
|
|
|
shuffle=True,
|
|
|
|
drop_last=True,
|
|
|
|
num_workers=num_workers
|
|
|
|
)
|
|
|
|
|
|
|
|
val_dataset = InstructionDataset(val_data, tokenizer)
|
|
|
|
val_loader = DataLoader(
|
|
|
|
val_dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
collate_fn=customized_collate_fn,
|
|
|
|
shuffle=False,
|
|
|
|
drop_last=False,
|
|
|
|
num_workers=num_workers
|
|
|
|
)
|
|
|
|
|
|
|
|
#######################################
|
|
|
|
# Load pretrained model
|
|
|
|
#######################################
|
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
# Small GPT model for testing purposes
|
|
|
|
if args.test_mode:
|
|
|
|
BASE_CONFIG = {
|
|
|
|
"vocab_size": 50257,
|
|
|
|
"context_length": 120,
|
|
|
|
"drop_rate": 0.0,
|
|
|
|
"qkv_bias": False,
|
|
|
|
"emb_dim": 12,
|
|
|
|
"n_layers": 1,
|
|
|
|
"n_heads": 2
|
|
|
|
}
|
|
|
|
model = GPTModel(BASE_CONFIG)
|
|
|
|
model.eval()
|
|
|
|
device = "cpu"
|
|
|
|
CHOOSE_MODEL = "Small test model"
|
|
|
|
|
|
|
|
# Code as it is used in the main chapter
|
|
|
|
else:
|
|
|
|
BASE_CONFIG = {
|
|
|
|
"vocab_size": 50257, # Vocabulary size
|
|
|
|
"context_length": 1024, # Context length
|
|
|
|
"drop_rate": 0.0, # Dropout rate
|
|
|
|
"qkv_bias": True # Query-key-value bias
|
|
|
|
}
|
|
|
|
|
|
|
|
model_configs = {
|
|
|
|
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
|
|
|
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
|
|
|
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
|
|
|
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
|
|
|
}
|
2024-06-20 07:37:47 -05:00
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
CHOOSE_MODEL = "gpt2-medium (355M)"
|
2024-06-20 07:37:47 -05:00
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
2024-06-20 07:37:47 -05:00
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
|
|
|
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
2024-06-20 07:37:47 -05:00
|
|
|
|
2024-06-22 08:57:18 -05:00
|
|
|
model = GPTModel(BASE_CONFIG)
|
|
|
|
load_weights_into_gpt(model, params)
|
|
|
|
model.eval()
|
|
|
|
model.to(device)
|
2024-06-20 07:37:47 -05:00
|
|
|
|
|
|
|
print("Loaded model:", CHOOSE_MODEL)
|
|
|
|
print(50*"-")
|
|
|
|
|
|
|
|
#######################################
|
|
|
|
# Finetuning the model
|
|
|
|
#######################################
|
|
|
|
print("Initial losses")
|
|
|
|
with torch.no_grad():
|
|
|
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=5)
|
|
|
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=5)
|
|
|
|
|
|
|
|
print(" Training loss:", train_loss)
|
|
|
|
print(" Validation loss:", val_loss)
|
|
|
|
|
|
|
|
start_time = time.time()
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
|
2024-06-22 08:57:18 -05:00
|
|
|
|
2024-06-20 07:37:47 -05:00
|
|
|
num_epochs = 2
|
|
|
|
|
2024-06-21 05:23:24 -05:00
|
|
|
torch.manual_seed(123)
|
2024-06-20 07:37:47 -05:00
|
|
|
train_losses, val_losses, tokens_seen = train_model_simple(
|
|
|
|
model, train_loader, val_loader, optimizer, device,
|
|
|
|
num_epochs=num_epochs, eval_freq=5, eval_iter=5,
|
|
|
|
start_context=format_input(val_data[0]), tokenizer=tokenizer
|
|
|
|
)
|
|
|
|
|
|
|
|
end_time = time.time()
|
|
|
|
execution_time_minutes = (end_time - start_time) / 60
|
|
|
|
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
|
|
|
|
|
|
|
epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
|
|
|
|
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)
|
|
|
|
print(50*"-")
|
|
|
|
|
|
|
|
#######################################
|
|
|
|
# Saving results
|
|
|
|
#######################################
|
2024-06-21 05:23:24 -05:00
|
|
|
print("Generating responses")
|
2024-06-20 07:37:47 -05:00
|
|
|
for i, entry in tqdm(enumerate(test_data), total=len(test_data)):
|
|
|
|
|
|
|
|
input_text = format_input(entry)
|
|
|
|
|
|
|
|
token_ids = generate(
|
|
|
|
model=model,
|
|
|
|
idx=text_to_token_ids(input_text, tokenizer).to(device),
|
|
|
|
max_new_tokens=256,
|
|
|
|
context_size=BASE_CONFIG["context_length"],
|
|
|
|
eos_id=50256
|
|
|
|
)
|
|
|
|
generated_text = token_ids_to_text(token_ids, tokenizer)
|
|
|
|
response_text = generated_text[len(input_text):].replace("### Response:", "").strip()
|
|
|
|
|
|
|
|
test_data[i]["model_response"] = response_text
|
|
|
|
|
|
|
|
test_data_path = "instruction-data-with-response-standalone.json"
|
|
|
|
with open(test_data_path, "w") as file:
|
|
|
|
json.dump(test_data, file, indent=4) # "indent" for pretty-printing
|
|
|
|
print(f"Responses saved as {test_data_path}")
|
|
|
|
|
|
|
|
file_name = f"{re.sub(r'[ ()]', '', CHOOSE_MODEL) }-sft-standalone.pth"
|
|
|
|
torch.save(model.state_dict(), file_name)
|
|
|
|
print(f"Model saved as {file_name}")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-06-22 08:57:18 -05:00
|
|
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="Finetune a GPT model for classification"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--test_mode",
|
|
|
|
default=False,
|
|
|
|
action="store_true",
|
|
|
|
help=("This flag runs the model in test mode for internal testing purposes. "
|
|
|
|
"Otherwise, it runs the model as it is used in the chapter (recommended).")
|
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
main(args.test_mode)
|