| 
									
										
										
										
											2024-03-19 09:26:26 -05:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | import tiktoken | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from torch.utils.data import Dataset, DataLoader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTDatasetV1(Dataset): | 
					
						
							|  |  |  |     def __init__(self, txt, tokenizer, max_length, stride): | 
					
						
							|  |  |  |         self.input_ids = [] | 
					
						
							|  |  |  |         self.target_ids = [] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Tokenize the entire text | 
					
						
							| 
									
										
										
										
											2024-06-08 14:57:34 -05:00
										 |  |  |         token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Use a sliding window to chunk the book into overlapping sequences of max_length | 
					
						
							|  |  |  |         for i in range(0, len(token_ids) - max_length, stride): | 
					
						
							|  |  |  |             input_chunk = token_ids[i:i + max_length] | 
					
						
							|  |  |  |             target_chunk = token_ids[i + 1: i + max_length + 1] | 
					
						
							|  |  |  |             self.input_ids.append(torch.tensor(input_chunk)) | 
					
						
							|  |  |  |             self.target_ids.append(torch.tensor(target_chunk)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __len__(self): | 
					
						
							|  |  |  |         return len(self.input_ids) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getitem__(self, idx): | 
					
						
							|  |  |  |         return self.input_ids[idx], self.target_ids[idx] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  | def create_dataloader_v1(txt, batch_size=4, max_length=256, | 
					
						
							| 
									
										
										
										
											2024-04-13 14:57:56 -04:00
										 |  |  |                          stride=128, shuffle=True, drop_last=True, num_workers=0): | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |     # Initialize the tokenizer | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataset | 
					
						
							|  |  |  |     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create dataloader | 
					
						
							| 
									
										
										
										
											2024-02-25 07:23:38 -06:00
										 |  |  |     dataloader = DataLoader( | 
					
						
							| 
									
										
										
										
											2024-06-20 00:36:46 +02:00
										 |  |  |         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |     return dataloader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class MultiHeadAttention(nn.Module): | 
					
						
							| 
									
										
										
										
											2024-04-04 07:27:41 -05:00
										 |  |  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         super().__init__() | 
					
						
							| 
									
										
										
										
											2024-03-06 08:30:32 -06:00
										 |  |  |         assert d_out % num_heads == 0, "d_out must be divisible by num_heads" | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.d_out = d_out | 
					
						
							|  |  |  |         self.num_heads = num_heads | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | 
					
						
							|  |  |  |         self.dropout = nn.Dropout(dropout) | 
					
						
							| 
									
										
										
										
											2024-04-04 07:27:41 -05:00
										 |  |  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         b, num_tokens, d_in = x.shape | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         queries = self.W_query(x) | 
					
						
							|  |  |  |         values = self.W_value(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # We implicitly split the matrix by adding a `num_heads` dimension | 
					
						
							|  |  |  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | 
					
						
							|  |  |  |         keys = keys.transpose(1, 2) | 
					
						
							|  |  |  |         queries = queries.transpose(1, 2) | 
					
						
							|  |  |  |         values = values.transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | 
					
						
							|  |  |  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | 
					
						
							| 
									
										
										
										
											2024-03-09 17:42:25 -06:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         # Original mask truncated to the number of tokens and converted to boolean | 
					
						
							|  |  |  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | 
					
						
							| 
									
										
										
										
											2024-03-09 17:42:25 -06:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Use the mask to fill attention scores | 
					
						
							|  |  |  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | 
					
						
							|  |  |  |         attn_weights = self.dropout(attn_weights) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shape: (b, num_tokens, num_heads, head_dim) | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         context_vec = (attn_weights @ values).transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | 
					
						
							|  |  |  |         context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         context_vec = self.out_proj(context_vec)  # optional projection | 
					
						
							| 
									
										
										
										
											2024-01-29 08:13:52 -06:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-03-18 08:16:17 -05:00
										 |  |  |         return context_vec |